dat.vanhowe1999 | R Documentation |
Results from 33 studies examining the association between male circumcision and HIV infection. \loadmathjax
dat.vanhowe1999
The data frame contains the following columns:
study | character | study author |
category | character | study type (high-risk group, partner study, or population survey) |
non.pos | numeric | number of non-circumcised HIV positive cases |
non.neg | numeric | number of non-circumcised HIV negative cases |
cir.pos | numeric | number of circumcised HIV positive cases |
cir.neg | numeric | number of circumcised HIV negative cases |
The 33 studies provide data in terms of \mjeqn2 \times 22x2 tables in the form:
HIV positive | HIV negative | |
non-circumcised | non.pos | non.neg |
circumcised | cir.pos | cir.neg
|
The goal of the meta-analysis was to examine if the risk of an HIV infection differs between non-circumcised versus circumcised men.
The dataset is interesting because it can be used to illustrate the difference between naively pooling results by summing up the counts across studies and then computing the odds ratio based on the aggregated table (as was done by Van Howe, 1999) and conducting a proper meta-analysis (as illustrated by O'Farrell & Egger, 2000). In fact, a proper meta-analysis shows that the HIV infection risk is on average higher in non-circumcised men, which is the opposite of what the naive pooling approach yields (which makes this an illustration of Simpson's paradox).
medicine, epidemiology, odds ratios
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Van Howe, R. S. (1999). Circumcision and HIV infection: Review of the literature and meta-analysis. International Journal of STD & AIDS, 10(1), 8–16. https://doi.org/10.1258/0956462991913015
O'Farrell, N., & Egger, M. (2000). Circumcision in men and the prevention of HIV infection: A 'meta-analysis' revisited. International Journal of STD & AIDS, 11(3), 137–142. https://doi.org/10.1258/0956462001915480
### copy data into 'dat' and examine data dat <- dat.vanhowe1999 dat ## Not run: ### load metafor package library(metafor) ### naive pooling by summing up the counts within categories and then ### computing the odds ratios and corresponding confidence intervals cat1 <- with(dat[dat$category=="high-risk group",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat2 <- with(dat[dat$category=="partner study",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat3 <- with(dat[dat$category=="population survey",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) summary(cat1, transf=exp, digits=2) summary(cat2, transf=exp, digits=2) summary(cat3, transf=exp, digits=2) ### naive pooling across all studies all <- escalc(measure="OR", ai=sum(dat$non.pos), bi=sum(dat$non.neg), ci=sum(dat$cir.pos), di=sum(dat$cir.neg)) summary(all, transf=exp, digits=2) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=non.pos, bi=non.neg, ci=cir.pos, di=cir.neg, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat, method="DL") res predict(res, transf=exp, digits=2) ### random-effects model within subgroups res <- rma(yi, vi, data=dat, method="DL", subset=category=="high-risk group") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="partner study") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="population survey") predict(res, transf=exp, digits=2) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.