Nothing
#' @import futile.logger
CheckSufficientPower <- function(metaMat,
covariates,
noCovariates,
nnodes,
robustCutoff,
robustCutoffRho, # new SKF20200221
typeCategorical, # new SKF20200221
typeContinuous, # new SKF20200221
verbosity,
RVnames,
startStop,
deconfF # new TB20220704
) {
# global check for sufficient samples of each case and control groups
noCondition <- nrow(metaMat[metaMat[,1] == 1, ])
# number of samples with Status == 1
noControl <- nrow(metaMat[metaMat[,1] == 0, ])
# number of samples with Status == 0
conditionMat <- metaMat[metaMat[,1] == 1, ]
if (ncol(metaMat) == 1) {
noCondition <- length(metaMat[metaMat[,1] == 1, ])
noControl <- length(metaMat[metaMat[,1] == 0, ])
}
flog.debug(paste("CheckSufficientPower -- covariates: ",
paste(covariates, collapse = ", ")),
name = "my.logger")
flog.debug(paste("CheckSufficientPower -- noCovariates:",
noCovariates),
name = "my.logger")
if (noCondition < robustCutoff | noControl < robustCutoff) {
flog.error(msg = paste("Not enough(robustCutoff =", robustCutoff, ") samples in either case or controle group."),
name = "my.logger")
stop(paste("Not enough(robustCutoff =", robustCutoff, ") samples in either case or controle group."))
}
robustSingle <- vector(length = length(covariates), mode = "logical")
names(robustSingle) <- covariates
robustCombination <- as.data.frame(matrix(nrow = length(covariates),
ncol = length(covariates),
data = FALSE))
rownames(robustCombination) <- colnames(robustCombination) <- covariates
## ---- getVariableType
getVariableType <- function (values, variable) {
# variable == name of covariate
if (is.numeric (values) &&
all (values %in% c (0, 1)) &&
! (! is.null(typeContinuous) && variable %in% typeContinuous) &&
! (! is.null(typeCategorical) && variable %in% typeCategorical)) {
return ("binary") # treat as binary
}
else if ((is.numeric (values) ||
(! is.null (typeContinuous) && variable %in% typeContinuous)) &&
! (! is.null (typeCategorical) && variable %in% typeCategorical)) {
return ("continuous") # treat as continuous
}
else {
return ("categorical") # treat as categorical
}
}
for (i in seq_along(covariates)) {
if (!is.na(RVnames[[1]]) && covariates[i] %in% RVnames) {
# all random effect variables are labeled as "not robust"
next
}
variableType <- getVariableType (metaMat [, i], covariates [i])
if (variableType == "binary" || variableType == "categorical") {
# how many samples have a value != the majority value
# if median(var) == 0: are there >robustCutoff samples with var == 1
if (sum (as.numeric (as.factor(metaMat[, i])) !=
median (as.numeric (as.factor(metaMat[, i])),
na.rm = TRUE),
na.rm = TRUE) >= robustCutoff) {
robustSingle[i] <- TRUE
}
}
if (variableType == "continuous") {
if (sum (metaMat[, i] != median (metaMat[, i], na.rm = TRUE),
na.rm = TRUE) >= robustCutoffRho) {
robustSingle[i] <- TRUE
}
}
# skip combinations, if "naiveStop"
if ((!is.na(startStop[[1]]) && startStop == "naiveStop")) {
next
}
# new TB20220704
# if a covariate is listed in deconfF, set its whole column to FALSE
if (covariates[i] %in% deconfF) {
robustCombination[i,] <- FALSE
next
}
for (j in seq_along(covariates)) {
if (i == j) {
robustCombination[i,j] <- TRUE
next
}
toCompare <- na.exclude(metaMat[, c(i,j)])
variableType1 <- getVariableType (toCompare [, 1], covariates [i])
variableType2 <- getVariableType (toCompare [, 2], covariates [j])
robust1 <- FALSE
if (variableType1 == "binary" || variableType1 == "categorical") {
if (sum (as.numeric (as.factor(toCompare [, 1])) != median (as.numeric (as.factor(toCompare [, 1])), na.rm = TRUE), na.rm = TRUE) >= robustCutoff) {
robust1 <- TRUE
}
}
if (variableType1 == "continuous") {
if (sum (toCompare [, 1] != median (toCompare [, 1], na.rm = TRUE), na.rm = TRUE) >= robustCutoffRho) {
robust1 <- TRUE # robustCutoffRho == 1 matches older behaviour of MetaCardis pipeline: at least two values for continuous parameter
}
}
robust2 <- FALSE
if (variableType2 == "binary" || variableType2 == "categorical") {
if (sum (as.numeric (as.factor(toCompare [, 2])) != median (as.numeric (as.factor(toCompare [, 2])), na.rm = TRUE), na.rm = TRUE) >= robustCutoff) {
robust2 <- TRUE
}
}
if (variableType2 == "continuous") {
if (sum (toCompare [, 2] != median (toCompare [, 2], na.rm = TRUE), na.rm = TRUE) >= robustCutoffRho) {
robust2 <- TRUE # robustCutoffRho == 1 matches older behaviour of MetaCardis pipeline: at least two values for continuous parameter
}
}
if (robust1 && robust2) {
robustCombination[i,j] <- TRUE
robustCombination[j,i] <- TRUE
}
} # for j
} # for i
return(list(robustSingle, robustCombination))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.