Nothing
#' gwr_beta_glm
#' to be documented
#' @usage gwr_beta_glm(Y,XV,ALL_X,TP,indexG,Wd,NN,W=NULL,isgcv=FALSE,SE=FALSE,
#' KernelTP='shepard',doMC=FALSE,ncore=1,TP_estim_as_extrapol=FALSE,
#' get_ts=FALSE, family=NULL)
#' @param Y A vector of response
#' @param XV A matrix with covariates with non stationnary parameters
#' @param ALL_X A matrix with all covariates
#' @param TP An index of target points.
#' @param indexG Precomputed Matrix of indexes of NN neighbors.
#' @param Wd Precomputed Matrix of weights.
#' @param NN Number of spatial Neighbours for kernels computations
#' @param W The spatial weight matrix for spatial dependence
#' @param isgcv leave one out cross validation, default FALSE
#' @param SE If standard error are computed, default FALSE
#' @param KernelTP Kernel type for extrapolation of Beta from Beta(TP)
#' @param doMC Boolean for parallel computation.
#' @param ncore Number of cores for parallel computation.
#' @param TP_estim_as_extrapol Boolean for prediction mode
#' @param get_ts Boolean for computing Trace(S)
#' @param family a Family object see(glmboost help)
#' @noRd
#' @return A list with Betav, standard error, edf and trace(hatMatrix)
gwr_beta_glm<-function(Y,XV,ALL_X,TP,indexG,Wd,NN,W=NULL,isgcv=FALSE,SE=FALSE,kernels=NULL,H=NULL,adaptive=NULL,doMC=FALSE,ncore=1,TP_estim_as_extrapol=FALSE,get_ts=FALSE,get_s=FALSE,family=NULL)
{
if(is.null(family)) family = gaussian(link = "identity")
if(!is.null(XV)) m=ncol(XV) else m=0
if(get_s) get_ts=TRUE
n=length(Y)
ntp=length(TP)
if(TP_estim_as_extrapol) {
SE=FALSE
isgcv=FALSE
}
if(TP_estim_as_extrapol) Betav=matrix(0,nrow=ntp,ncol= ifelse(is.null(W), m, m + 1)) else Betav=matrix(0,nrow=n,ncol= ifelse(is.null(W), m, m + 1))
if(get_ts | get_s | SE) tS<-0
if(get_s | SE) Shat <- matrix(0,ncol=n,nrow=n) else Shat=NULL
if(get_s | SE) SEV <- matrix(0,nrow=n, ncol=ifelse(is.null(W), ncol(XV), ncol(XV) + 1)) else SEV=NULL
if(!is.null(XV)) m=ncol(XV) else m=0
namesXV=colnames(XV)
if(isgcv) loo=-1 else loo=1:NN
if(doMC) {
registerDoParallel(cores=ncore)
} else registerDoSEQ()
if(ncore>1) myblocks<-split(1:length(TP), ceiling(seq_along(TP)/round(length(TP)/ncore))) else myblocks<-list(b1=1:length(TP))
res<-foreach(myblock =1:length(myblocks),.combine="comb",.inorder=FALSE) %dopar% {
for(z in myblocks[[myblock]]){
#browser()
index=indexG[z,loo]
wd2<-Wd[z,loo]
wd<-sqrt(wd2)
dataglm<-data.frame(Y=as.matrix(Y[index]),as.matrix(XV[index,]))
# if(iwls) {
# lml<-IWLS(as.matrix(Y[index]),as.matrix(XV[index,]),1,wd=wd)
# betav=lml$beta
# } else {
lml=glm(formula=as.formula('Y~.-1'),data=dataglm,family=family,weights=wd)
betav=lml$coefficients
#}
coefNA<-which(is.na(betav))
betav[coefNA]<-0
if(SE & !isgcv) {
coef_NON_NA=setdiff(1:ncol(XV),coefNA)
SEV[TP[z],coef_NON_NA] <- sqrt(diag(vcov(lml)))
}
if(get_ts){
Xw<-as.matrix(XV[index,]*lml$weights,ncol=ncol(XV))
coef_NON_NA=setdiff(1:ncol(Xw),coefNA)
if(length(coef_NON_NA)>0){
XwX<-try(solve(crossprod(Xw[, coef_NON_NA], Xw[, coef_NON_NA]),silent = TRUE))
Zwi =try( XwX %*% t(Xw[, coef_NON_NA]),silent = TRUE)
tS=tS+ifelse(class(Zwi)[1]=='try-error',0,(Xw[1, coef_NON_NA] %*% Zwi)[, 1])
}
}
if(get_s) {
if(length(coef_NON_NA)>0){
Shat[z,index]<-( (Xw[1, coef_NON_NA] %*% Zwi))
} else Shat[z,index]<-0
}
if(!TP_estim_as_extrapol){
Betav[TP[z],]<-betav
} else {
Betav[z,]<-betav
}
}
if(!(SE & !isgcv)) {
sev=NULL
} else {
sev=SEV[TP[myblocks[[myblock]]],]
}
rm(index,wd,betav)
gc()
list(betav=Betav[TP[myblocks[[myblock]]],],sev=sev,tS=tS,Shat=Shat)
}
if(TP_estim_as_extrapol) Betav=matrix(0,nrow=ntp,ncol= ifelse(is.null(W), m, m + 1)) else Betav=matrix(0,nrow=n,ncol= ifelse(is.null(W), m, m + 1))
if(!TP_estim_as_extrapol) {
Betav[TP,]<-res$betav
if(SE) {
edf=n;
SEV <- matrix(0,nrow=n, ncol=ifelse(is.null(W), m, m + 1))
SEV[TP,]=res$sev
}
} else {
Betav<-res$betav
}
if(SE) colnames(SEV)=colnames(XV)
if(ntp<length(Y) & !TP_estim_as_extrapol){
Wtp<- normW(Matrix::t(sparseMatrix(i = rep(1:ntp,each=NN), j = as.numeric(t(indexG)), dims = c(ntp,n), x =as.numeric(t(Wd))))[-TP,])
Betav[-TP,]=as.matrix(Wtp%*% Betav[TP,])
if(SE) SEV[-TP,]=as.matrix(Wtp%*% SEV[TP,])
}
colnames(Betav)=namesXV
if(get_s | get_ts | SE) list(Betav=Betav,SEV=SEV,edf=n-res$tS,tS=res$tS,Shat=res$Shat) else list(Betav=Betav,SEV=NULL,edf=NULL,tS=NULL,Shat=NULL)
#if(SE & !isgcv & !pred) list(Betav=Betav,SEV=SEV,edf=0,tS=0,Shat=NULL) else list(Betav=Betav,SEV=NULL,edf=0,tS=0,Shat=NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.