Nothing
data("ordmvnorm")
df <- ordmvnorm
df$y <- attr(ordmvnorm, "instance_label")
df <- df[, c(1, 2, 8, 3:7)]
df <- tibble::as_tibble(df)
train <- df$bag_name %in% 1:30
df1 <- df[train, ]
df1$bag_label <- df1$bag_name <- NULL
df1_test <- df[!train, ]
# Tests ------------------------------------------------------------------------
test_that("svor_exc() internal functions work on simple examples", {
y <- df1$y
x <- as.matrix(df1[, 2:6])
res <- svor_exc_fit(y, x, c = 1, rescale = FALSE) %>%
suppressMessages()
f <- .calculate_f(res$smo_fit$alpha, compute_kernel(x, type = "linear"))
# ggplot2::qplot(f, y) +
# ggplot2::geom_vline(xintercept = res$smo_fit$b, linetype = "dotted")
tmp <- outer(as.vector(f), res$smo_fit$b, `-`)
y_pred <- rowSums(tmp > 0) + 1
expect_snapshot({
# evaluation measures
table(y, y_pred)
pROC::multiclass.roc(response = y,
predictor = f) %>%
suppressMessages()
mzoe <- mean(y != y_pred)
mae <- mean(y - y_pred)
mzoe; mae
})
expect_true(TRUE)
})
test_that("svor_exc() has reasonable performance", {
skip_on_cran()
skip_on_ci()
mdl1 <- svor_exc(y ~ ., data = df1, weights = NULL) %>%
suppressMessages()
check_performance <- function(model, df, roc_cutoff, mzoe_cutoff, mae_cutoff) {
preds <- predict(model, new_data = df)
pred_scores <- predict(model, new_data = df, type = "raw")
resp <- df$y
pred <- as.numeric(as.character(preds$.pred_class))
# roc
suppressMessages({
roc <- pROC::multiclass.roc(response = resp, predictor = pred)
})
expect_gt(roc$auc, roc_cutoff)
# mean zero-one error
mzoe <- mean(resp != pred)
expect_lte(mzoe, mzoe_cutoff)
# mean absolute error
mae <- mean(abs(resp - pred))
expect_lte(mae, mae_cutoff)
expect_snapshot({
print(roc$auc)
print(mzoe)
print(mae)
})
}
check_performance(mdl1, df1, 0.93, 0.20, 0.20)
check_performance(mdl1, df1_test, 0.94, 0.22, 0.22) # a bit worse on testing data, but not bad
})
test_that("svor_exc() works for data-frame-like inputs", {
mdl2 <- svor_exc(x = df1[, paste0("V", 1:5)], y = df1$y) %>%
suppressMessages()
predict(mdl2, new_data = df1, type = "class")
predict(mdl2, new_data = df1, type = "raw")
pred <- predict(mdl2, new_data = df1, type = "class")
expect_equal(mdl2$levels, levels(pred$.pred_class))
})
test_that("svor_exc() works with formula method", {
suppressMessages({
mdl1 <- svor_exc(y ~ V1 + V2 + V3 + V4 + V5, data = df1)
mdl2 <- svor_exc(x = df1[, paste0("V", 1:5)],
y = df1$y)
})
expect_equal(mdl1$model, mdl2$model)
expect_equal(mdl1$total_step, mdl2$total_step)
expect_equal(mdl1$call_type, "svor_exc.formula")
expect_equal(mdl1$features, paste0("V", 1:5))
# predictions should match
expect_equal(predict(mdl1, df1, type = "raw"), predict(mdl2, df1, type = "raw"))
expect_equal(predict(mdl1, df1, type = "class"), predict(mdl2, df1, type = "class"))
predict(mdl1, df1, type = "raw")
predict(mdl1, df1, type = "class")
# check only 1 predictor works
mdl1 <- svor_exc(y ~ V1, data = df1)
predict(mdl1, df1, type = "raw")
# check some obscure formulas
mdl1 <- svor_exc(y ~ 0 + V1:V2 + V2*V3, data = df1) %>%
suppressMessages()
expect_equal(mdl1$features,
colnames(model.matrix(~ 0 + V1:V2 + V2*V3, data = df1)))
predict(mdl1, df1, type = "raw")
})
test_that("`svor_exc()` works with `mi_df` method", {
df2 <- df1
df2$bag_name <- seq_len(nrow(df2))
predictors <- paste0("V", 1:5)
df1_mi <- as_mi_df(df2[, c("y", "bag_name", predictors)],
bag_label = "y",
instance_label = NULL)
suppressMessages({
mdl1 <- svor_exc(df1_mi)
mdl2 <- svor_exc(x = df1[, predictors],
y = df1$y)
})
expect_equal(mdl1$model, mdl2$model)
expect_equal(mdl1$total_step, mdl2$total_step)
expect_equal(mdl1$call_type, "svor_exc.mi_df")
expect_equal(mdl1$features, predictors)
expect_equal(mdl1$bag_name, "bag_name")
# predictions should match
expect_equal(predict(mdl1, df1, type = "raw"), predict(mdl2, df1, type = "raw"))
expect_equal(predict(mdl1, df1, type = "class"), predict(mdl2, df1, type = "class"))
})
test_that("predict.svor_exc() returns labels that match the input labels", {
test_prediction_levels_equal <- function(df, class = "default") {
suppressMessages({
mdl <- switch(class,
"default" = svor_exc(x = df[, 2:6],
y = df$y),
"formula" = svor_exc(y ~ V1 + V2 + V3,
data = df))
})
preds <- predict(mdl, df, type = "class")
expect_setequal(levels(preds$.pred_class), levels(df$y))
}
# 1:5
df2 <- df1 %>% dplyr::mutate(y = factor(y))
test_prediction_levels_equal(df2)
test_prediction_levels_equal(df2, class = "formula")
# 1/0
df2 <- df1 %>% dplyr::mutate(y = factor(y, levels = 5:1))
test_prediction_levels_equal(df2)
test_prediction_levels_equal(df2, class = "formula")
# Characters
df2 <- df1 %>% dplyr::mutate(y = factor(y, labels = c("A", "B", "C", "D", "E")))
test_prediction_levels_equal(df2)
test_prediction_levels_equal(df2, class = "formula")
# check re-naming of factors returns the same predictions
df2 <- df1
df3 <- df1 %>% dplyr::mutate(y = ordered(y, labels = letters[1:5]))
mdl2 <- svor_exc(y ~ V1 + V2, data = df2, weights = NULL)
expect_message(mdl3 <- svor_exc(y ~ V1 + V2, data = df3, weights = NULL))
expect_equal(predict(mdl2, df2, type = "class") %>%
dplyr::mutate(.pred_class = ordered(.pred_class, labels = letters[1:5])),
predict(mdl3, df3, type = "class"),
ignore_attr = TRUE)
# NOTE: re-ordering of the factors in this case WILL NOT return the same model, and this is expected
})
test_that("Dots work in svor_exc() formula", {
df2 <- df1 %>% dplyr::select(y, V1, V2, V3)
suppressMessages({
misvm_dot <- svor_exc(y ~ ., data = df2)
misvm_nodot <- svor_exc(y ~ V1 + V2 + V3, data = df2)
})
expect_equal(misvm_dot$model, misvm_nodot$model)
expect_equal(misvm_dot$features, misvm_nodot$features)
expect_equal(misvm_dot$bag_name, misvm_nodot$bag_name)
expect_equal(predict(misvm_dot, new_data = df2), predict(misvm_nodot, new_data = df2))
})
test_that("svor_exc() has correct argument handling", {
# `weights`
suppressMessages({
expect_warning(svor_exc(y ~ ., data = df1, weights = TRUE))
svor_exc(y ~ ., data = df1, weights = NULL)
})
# `kernel`
expect_false(isTRUE(all.equal(
svor_exc(y ~ ., data = df1, weights = NULL, control = list(kernel = "radial")),
svor_exc(y ~ ., data = df1, weights = NULL, control = list(kernel = "linear"))
))) %>%
suppressMessages()
# `scale`
expect_false(isTRUE(all.equal(
svor_exc(y ~ ., data = df1, weights = NULL, control = list(scale = TRUE)),
svor_exc(y ~ ., data = df1, weights = NULL, control = list(scale = FALSE))
))) %>%
suppressMessages()
})
test_that("`svor_exc()` value returns make sense", {
skip_on_covr()
skip_on_ci()
df2 <- df1
df2$bag_name <- seq_len(nrow(df2))
expect_snapshot({
models <- list(
"xy" = svor_exc(x = df1[, 2:6], y = df1$y, weights = NULL),
"formula" = svor_exc(y ~ V1 + V2, data = df1, weights = NULL),
"mi_df" = svor_exc(as_mi_df(df2, bag_label = "y", instance_label = NULL)),
"no-scale" = svor_exc(x = df1[, 2:6], y = df1$y,
weights = NULL, control = list(scale = FALSE))
) %>%
suppressWarnings() %>%
suppressMessages()
print(lapply(models, names))
print(models)
})
expect_true(TRUE)
})
test_that("`svor_exc() works with bag input", {
mdl1 <- svor_exc(x = df1[, 2:6], y = df1$y, weights = NULL) %>%
suppressMessages()
bags_test <- df1_test$bag_name
pred_inst <- predict(mdl1, new_data = df1_test, type = "raw")
pred_bag <- predict(mdl1, new_data = df1_test, new_bags = bags_test,
type = "raw", layer = "bag")
expect_lte(length(unique(pred_bag[[1]])), length(unique(bags_test)))
pred_inst <- predict(mdl1, new_data = df1_test, type = "class")
pred_bag <- predict(mdl1, new_data = df1_test, new_bags = bags_test,
type = "class", layer = "bag")
expect_lte(length(unique(pred_bag[[1]])), length(unique(bags_test)))
})
test_that("Ordering of data doesn't change `svor_exc()` results", {
expect_predictions_equal <- function(model1, model2, data) {
# If predictions match for `type = 'raw` and `layer = 'instance'`, they will
# match for all other options.
expect_equal(predict(model1, data, type = "raw"),
predict(model2, data, type = "raw"))
}
form <- y ~ V1 + V2 + V3
suppressMessages({
mdl1 <- svor_exc(form, data = df1, weights = NULL)
mdl2 <- svor_exc(form, data = df1[sample(seq_len(nrow(df1))), ], weights = NULL)
})
expect_predictions_equal(mdl1, mdl2, df1)
expect_predictions_equal(mdl1, mdl2, df1_test)
})
test_that("Can pass sigma to `svor_exc()`", {
mdl1 <- svor_exc(y ~ V1 + V2, data = df1, control = list(kernel = "radial", sigma = 1/3))
predict(mdl1, df1)
expect_true(TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.