RMultBinary: Simulating a multivariate Bernoulli distribution

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/binary.R

Description

This function generates a sample from a multinomial distribution of K dependent binary (Bernoulli) variables (X_1, X_2, ..., X_K) defined by an array (of 2^K cells) detailing the joint-probabilities.

Usage

1
RMultBinary(n = 1, mult.bin.dist, target.values = NULL)

Arguments

n

Desired sample size. Default = 1.

mult.bin.dist

A list describing the multivariate binary distribution. It can be generated by the ObtainMultBinaryDist function. The list contains at least the element joint.proba, an array detailing the joint-probabilities of the K binary variables. The array has K dimensions of size 2, referring to the 2 possible outcomes of the considered variable. Hence, the total number of elements is 2^K. Additionnaly the list can also provides the element var.label, a list containing the names of the K variables.

target.values

A list describing the possibles outcomes of each binary variable, for instance {1, 2}. Default = {0, 1}.

Value

A list whose elements are detailed herehunder.

binary.sequences

The generated K x n random sequence.

possible.binary.sequences

The possible binary sequences, i.e. the domain.

chosen.random.index

The index of the random draws in the domain.

Author(s)

Thomas Suesse

Maintainer: Johan Barthelemy <johan@uow.edu.au>.

References

Lee, A.J. (1993). Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association. The American Statistician 47 (3): 209-215.

Qaqish, B. F., Zink, R. C., and Preisser, J. S. (2012). Orthogonalized residuals for estimation of marginally specified association parameters in multivariate binary data. Scandinavian Journal of Statistics 39, 515-527.

See Also

ObtainMultBinaryDist for estimating the joint-distribution required by this function.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# from Qaqish et al. (2012)
or <- matrix(c(Inf, 0.281, 2.214, 2.214,
               0.281, Inf, 2.214, 2.214,
               2.214, 2.214, Inf, 2.185,
               2.214, 2.214, 2.185, Inf), nrow = 4, ncol = 4, byrow = TRUE)
rownames(or) <- colnames(or) <- c("Parent1", "Parent2", "Sibling1", "Sibling2")

# hypothetical marginal probabilities
p <- c(0.2, 0.4, 0.6, 0.8)

# estimating the joint-distribution
p.joint <- ObtainMultBinaryDist(odds = or, marg.probs = p)

# simulating 100,000 draws from the obtained joint-distribution
y.sim <- RMultBinary(n = 1e5, mult.bin.dist = p.joint)$binary.sequences

# checking results
cat('dim y.sim =', dim(y.sim)[1], 'x', dim(y.sim)[2], '\n')
cat('Estimated marginal probs from simulated data\n')
apply(y.sim,2,mean)
cat('True probabilities\n')
print(p)
cat('Estimated correlation from simulated data\n')
cor(y.sim)
cat('True correlation\n')
Odds2Corr(or,p)$corr

# generating binary outcomes with outcome different than 0, 1
RMultBinary(n = 10, mult.bin.dist = p.joint, 
            target.values = list(c("A", "B"), c(0, 1), c(1, 2), c(100, 101)))

Example output

Loading required package: cmm
Loading required package: Rsolnp
Loading required package: numDeriv
Warning message:
In Ipfp(seed = seed, target.list = target.list, target.data = target.data,  :
  Missing values allowed in the target margins.
             Computation of the covariance matrices set to FALSE!
dim y.sim = 100000 x 4 
Estimated marginal probs from simulated data
 Parent1  Parent2 Sibling1 Sibling2 
 0.20161  0.39648  0.59679  0.80028 
True probabilities
[1] 0.2 0.4 0.6 0.8
Estimated correlation from simulated data
            Parent1    Parent2  Sibling1  Sibling2
Parent1   1.0000000 -0.2161698 0.1456818 0.1034657
Parent2  -0.2161698  1.0000000 0.1859698 0.1442752
Sibling1  0.1456818  0.1859698 1.0000000 0.1537418
Sibling2  0.1034657  0.1442752 0.1537418 1.0000000
True correlation
            Parent1    Parent2  Sibling1  Sibling2
Parent1   1.0000000 -0.2156821 0.1445775 0.1076353
Parent2  -0.2156821  1.0000000 0.1847014 0.1445775
Sibling1  0.1445775  0.1847014 1.0000000 0.1563619
Sibling2  0.1076353  0.1445775 0.1563619 1.0000000
$binary.sequences
      Parent1 Parent2 Sibling1 Sibling2
 [1,] "B"     "1"     "2"      "101"   
 [2,] "B"     "0"     "1"      "100"   
 [3,] "B"     "1"     "2"      "100"   
 [4,] "B"     "1"     "2"      "100"   
 [5,] "B"     "1"     "1"      "100"   
 [6,] "B"     "0"     "1"      "100"   
 [7,] "B"     "0"     "1"      "100"   
 [8,] "B"     "1"     "2"      "100"   
 [9,] "B"     "1"     "1"      "100"   
[10,] "B"     "0"     "2"      "100"   

$chosen.random.index
 [1] 16  2  8  8  4  2  2  8  4  6

$possible.binary.sequences
   Var1 Var2 Var3 Var4
1     A    0    1  100
2     B    0    1  100
3     A    1    1  100
4     B    1    1  100
5     A    0    2  100
6     B    0    2  100
7     A    1    2  100
8     B    1    2  100
9     A    0    1  101
10    B    0    1  101
11    A    1    1  101
12    B    1    1  101
13    A    0    2  101
14    B    0    2  101
15    A    1    2  101
16    B    1    2  101

mipfp documentation built on May 2, 2019, 6:01 a.m.