Description Usage Arguments Details Value Note Author(s) See Also Examples
Summary method for class mipfp
.
1 2 3 4 5 6 |
object |
An object of class |
x |
An object of class |
cov.method |
Indicates which method to use to compute the covariance. Possible values
are Delta ( |
prop |
If set to |
target.list |
The list of the dimensions of the targets used by for the estimation process (see Estimate for more details). |
l.names |
If set to a value greater than 0, then the names of the
categories will be shorten to a length of |
... |
Further arguments passed to the underlying |
The function summary.mipfp
compute and returns a list of summary
statistics of the estimates (covariance, t-statistics, goodness-of-fit
statistics, associated degrees of freedom).
The function summary.mipfp
returns an object of class
summary.mipfp
having the following components:
call |
A |
conv |
A Boolean indicating if the specified method converged to a
solution ( |
method |
The method used to generate estimates. |
df |
Degrees of freedom of the estimates. |
estimates |
Estimates generated by the selected method with standard deviations and associated t- and p-values. |
error.margins |
A list returning, for each margin, the absolute maximum deviation between the desired and generated margin. |
vcov |
A covariance matrix of the estimates (last index move fastest) computed
using the method specified in |
tab.gof |
A table containing the Log-likelihood (G2), Wald (W2) and Pearson chi-squared (X2) statistics with their associated p-values. |
stats.df |
Degrees of freedom for the |
dim.names |
Original dimension names of the estimated table. |
l.names |
The value of the parameter |
When using print
for printing the resulting mipfp
object, you can
also have a look at the options of the method flat
.
Johan Barthelemy.
Maintainer: Johan Barthelemy johan@uow.edu.au.
The estimation function Estimate
.
The function coef.mipfp
to extract the
estimates.
gof.estimates
for the computation of the
G2
, W2
and X2
statistics.
vcov.mipfp
for the details of the covariance
computation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # loading the data
data(spnamur, package = "mipfp")
# subsetting the data frame, keeping only the first 3 variables
spnamur.sub <- subset(spnamur, select = Household.type:Prof.status)
# true table
true.table <- table(spnamur.sub)
# extracting the margins
tgt.v1 <- apply(true.table, 1, sum)
tgt.v1.v2 <- apply(true.table, c(1,2), sum)
tgt.v2.v3 <- apply(true.table, c(2,3), sum)
tgt.list.dims <- list(1, c(1,2), c(2,3))
tgt.data <- list(tgt.v1, tgt.v1.v2, tgt.v2.v3)
# creating the seed, a 10 pct sample of spnamur
seed.df <- spnamur.sub[sample(nrow(spnamur), round(0.10*nrow(spnamur))), ]
seed.table <- table(seed.df)
# applying the different fitting methods
r.ipfp <- Estimate(seed=seed.table, target.list=tgt.list.dims,
target.data = tgt.data)
# printing the summary
print(summary(r.ipfp))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.