PLCI.mirt | R Documentation |
Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
PLCI.mirt(
mod,
parnum = NULL,
alpha = 0.05,
search_bound = TRUE,
step = 0.5,
lower = TRUE,
upper = TRUE,
inf2val = 30,
NealeMiller = FALSE,
verbose = TRUE,
...
)
mod |
a converged mirt model |
parnum |
a numeric vector indicating which parameters to estimate.
Use |
alpha |
two-tailed alpha critical level |
search_bound |
logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends |
step |
magnitude of steps used when |
lower |
logical; search for the lower CI? |
upper |
logical; search for the upper CI? |
inf2val |
a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30 |
NealeMiller |
logical; use the Neale and Miller 1997 approximation? Default is |
verbose |
logical; include additional information in the console? |
... |
additional arguments to pass to the estimation functions |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Chalmers, R. P., Pek, J., & Liu, Y. (2017). Profile-likelihood Confidence Intervals in Item Response Theory Models. Multivariate Behavioral Research, 52, 533-550. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00273171.2017.1329082")}
Neale, M. C. & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.
boot.mirt
## Not run:
if(interactive()) mirtCluster() #use all available cores to estimate CI's in parallel
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
result <- PLCI.mirt(mod)
result
# model with constraints
mod <- mirt(dat, 'F = 1-5
CONSTRAIN = (1-5, a1)')
result <- PLCI.mirt(mod)
result
mod2 <- mirt(Science, 1)
result2 <- PLCI.mirt(mod2)
result2
# only estimate CI's slopes
sv <- mod2values(mod2)
parnum <- sv$parnum[sv$name == 'a1']
result3 <- PLCI.mirt(mod2, parnum)
result3
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.