| PLCI.mirt | R Documentation | 
Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
PLCI.mirt(
  mod,
  parnum = NULL,
  alpha = 0.05,
  search_bound = TRUE,
  step = 0.5,
  lower = TRUE,
  upper = TRUE,
  inf2val = 30,
  NealeMiller = FALSE,
  verbose = TRUE,
  ...
)
| mod | a converged mirt model | 
| parnum | a numeric vector indicating which parameters to estimate.
Use  | 
| alpha | two-tailed alpha critical level | 
| search_bound | logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends | 
| step | magnitude of steps used when  | 
| lower | logical; search for the lower CI? | 
| upper | logical; search for the upper CI? | 
| inf2val | a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30 | 
| NealeMiller | logical; use the Neale and Miller 1997 approximation? Default is  | 
| verbose | logical; include additional information in the console? | 
| ... | additional arguments to pass to the estimation functions | 
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Chalmers, R. P., Pek, J., & Liu, Y. (2017). Profile-likelihood Confidence Intervals in Item Response Theory Models. Multivariate Behavioral Research, 52, 533-550. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00273171.2017.1329082")}
Neale, M. C. & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.
boot.mirt
if(interactive()) mirtCluster() #use all available cores to estimate CI's in parallel
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
result <- PLCI.mirt(mod)
result
mod2 <- mirt(Science, 1)
result2 <- PLCI.mirt(mod2)
result2
# only estimate CI's slopes
sv <- mod2values(mod2)
parnum <- sv$parnum[sv$name == 'a1']
result3 <- PLCI.mirt(mod2, parnum)
result3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.