Nothing
# Multiple imputation using xgboost (save models using xgb.save() and imputations)
mixgb_save <- function(Obs.m, matrix.method, cbind.types, all.idx,
save.models.folder, i = i, save.vars, save.p, extra.vars = NULL, extra.types = NULL, pmm.type, pmm.link, pmm.k, yobs.list, yhatobs.list = NULL, sorted.dt,
missing.vars, sorted.names, Na.idx, missing.types, Ncol,
xgb.params = list(),
nrounds, early_stopping_rounds, print_every_n, verbose,
...) {
# yhatobs.list if it is pmm.type 1, must feed in the yhatobs.list
# pre-allocation for models
xgb.models <- vector("list", save.p)
names(xgb.models) <- save.vars
# pre-allocation for models for pmm.type=0,2,or "auto"
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2) | isTRUE(pmm.type == "auto")) {
yhatobs.list <- vector("list", save.p)
names(yhatobs.list) <- save.vars
}
nthread <- xgb.params$nthread
for (var in missing.vars) {
na.idx <- Na.idx[[var]]
obs.y <- yobs.list[[var]]
# Mis.vars: missing variables except the current imputed variable (as response)
if (length(missing.vars) != 1) {
Mis.vars <- missing.vars[missing.vars != var]
if (matrix.method == "as.matrix") {
Mis.m <- as.matrix(sorted.dt[, Mis.vars, with = FALSE])
} else {
Mis.list <- lapply(Mis.vars, function(feature) {
if (cbind.types[feature] %in% c("numeric", "integer")) {
as.matrix(sorted.dt[[feature]])
} else if (cbind.types[feature] == "ordered") {
Matrix::t(fac2Sparse(sorted.dt[[feature]], drop.unused.levels = FALSE, factorPatt12 = c(T, F), contrasts.arg = "contr.poly")[[1]])
} else {
Matrix::t(fac2sparse(sorted.dt[[feature]], drop.unused.levels = FALSE))[, -1, drop = FALSE]
}
})
if (matrix.method == "cpp.combo") {
Mis.m <- cbind_combo(Mis.list)
} else if (matrix.method == "cpp.factor") {
Mis.m <- cbind_sparse_matrix(Mis.list)
}
}
All.m <- cbind2(Mis.m, Obs.m)
} else {
All.m <- Obs.m
}
obs.data <- All.m[-na.idx, , drop = FALSE]
mis.data <- All.m[na.idx, , drop = FALSE]
# numeric or integer ---------------------------------------------------------------------------
if (missing.types[var] == "numeric") {
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
dmis <- xgb.DMatrix(data = mis.data, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
obj.type <- "reg:squarederror"
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
yhatmis <- predict(xgb.fit, dmis)
if (!is.null(pmm.type)) {
if (pmm.type != 1) {
# for pmm.type=0 or 2 or auto (type 2 for numeric or integer)
yhatobs <- predict(xgb.fit, dobs)
yhatobs.list[[var]] <- yhatobs
} else {
# for pmm.type=1
yhatobs <- yhatobs.list[[var]]
}
yhatmis <- pmm(yhatobs = yhatobs, yhatmis = yhatmis, yobs = yobs.list[[var]], k = pmm.k)
}
# update dataset
sorted.dt[na.idx, (var) := yhatmis]
# save models
xgb.models[[var]] <- xgb.fit
} else if (missing.types[var] == "integer") {
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
dmis <- xgb.DMatrix(data = mis.data, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
obj.type <- "reg:squarederror"
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
yhatmis <- predict(xgb.fit, dmis)
if (!is.null(pmm.type)) {
if (pmm.type != 1) {
# for pmm.type=0 or 2 or auto (type 2 for numeric or integer)
yhatobs <- predict(xgb.fit, dobs)
yhatobs.list[[var]] <- yhatobs
} else {
# for pmm.type=1
yhatobs <- yhatobs.list[[var]]
}
yhatmis <- pmm(yhatobs = yhatobs, yhatmis = yhatmis, yobs = yobs.list[[var]], k = pmm.k)
# update dataset
sorted.dt[na.idx, (var) := yhatmis]
}
# round to integer when PMM is not used
sorted.dt[na.idx, (var) := round(yhatmis)]
# save models
xgb.models[[var]] <- xgb.fit
} else if (missing.types[var] == "binary") {
# binary ---------------------------------------------------------------------------
obs.y <- as.integer(obs.y) - 1
bin.t <- sort(table(obs.y))
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
dmis <- xgb.DMatrix(data = mis.data, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
# when bin.t has two values: bin.t[1] minority class & bin.t[2] majority class
# when bin.t only has one value: bin.t[1] the only existent class
if (is.na(bin.t[2])) {
# this binary variable only have one class being observed (e.g., observed values are all "0"s)
# skip xgboost training, just impute the only existent class
yhatmis <- levels(sorted.dt[[var]])[as.integer(names(bin.t[1])) + 1]
sorted.dt[na.idx, (var) := yhatmis]
# sorted.dt[[var]][na.idx] <- levels(sorted.dt[[var]])[as.integer(names(bin.t[1])) + 1]
# save models=the only class exist in the sample
xgb.models[[var]] <- yhatmis
yhatobs.list[[var]] <- rep(yhatmis, length(yobs.list[[var]]))
msg <- paste("The binary variable", var, "in the data only have single class. Imputation models can't be built.")
stop(msg)
} else {
if (!is.null(pmm) & pmm.link == "logit") {
# pmm by "logit" value
obj.type <- "binary:logitraw"
} else {
# pmm by "prob" and for no pmm
obj.type <- "binary:logistic"
}
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
eval_metric = "logloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
yhatmis <- predict(xgb.fit, dmis)
# save models
xgb.models[[var]] <- xgb.fit
if (is.null(pmm.type) | isTRUE(pmm.type == "auto")) {
# for pmm.type=NULL or "auto"
yhatmis <- ifelse(yhatmis >= 0.5, 1, 0)
yhatmis <- levels(sorted.dt[[var]])[yhatmis + 1]
sorted.dt[na.idx, (var) := yhatmis]
} else {
if (pmm.type == 1) {
# for pmm.type=1
yhatobs <- yhatobs.list[[var]]
} else {
# for pmm.type=0 or 2
yhatobs <- predict(xgb.fit, dobs)
yhatobs.list[[var]] <- yhatobs
}
yhatmis <- pmm(yhatobs = yhatobs, yhatmis = yhatmis, yobs = yobs.list[[var]], k = pmm.k)
sorted.dt[na.idx, (var) := yhatmis]
}
}
} else if (missing.types[var] == "logical") {
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
dmis <- xgb.DMatrix(data = mis.data, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
bin.t <- sort(table(obs.y))
# when bin.t has two values: bin.t[1] minority class & bin.t[2] majority class
# when bin.t only has one value: bin.t[1] the only existent class
if (is.na(bin.t[2])) {
# this binary variable only have one class being observed (e.g., observed values are all "0"s)
# skip xgboost training, just impute the only existent class
yhatmis <- as.logical(names(bin.t[1]))
sorted.dt[na.idx, (var) := yhatmis]
# save models=the only class exist in the sample
xgb.models[[var]] <- yhatmis
yhatobs.list[[var]] <- rep(yhatmis, length(yobs.list[[var]]))
msg <- paste("The logical variable", var, "in the data only have single class. Imputation models can't be built.")
stop(msg)
} else {
if (!is.null(pmm) & pmm.link == "logit") {
# pmm by "logit" value
obj.type <- "binary:logitraw"
} else {
# pmm by "prob" and for no pmm
obj.type <- "binary:logistic"
}
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
eval_metric = "logloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
yhatmis <- predict(xgb.fit, dmis)
# save models
xgb.models[[var]] <- xgb.fit
if (is.null(pmm.type) | isTRUE(pmm.type == "auto")) {
# for pmm.type=NULL or "auto"
yhatmis <- ifelse(yhatmis >= 0.5, T, F)
sorted.dt[na.idx, (var) := yhatmis]
} else {
if (pmm.type == 1) {
# for pmm.type=1
yhatobs <- yhatobs.list[[var]]
} else {
# for pmm.type=0 or 2
yhatobs <- predict(xgb.fit, dobs)
yhatobs.list[[var]] <- yhatobs
}
yhatmis <- pmm(yhatobs = yhatobs, yhatmis = yhatmis, yobs = yobs.list[[var]], k = pmm.k)
sorted.dt[na.idx, (var) := yhatmis]
}
}
} else {
# multiclass ---------------------------------------------------------------------------
obs.y <- as.integer(obs.y) - 1
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
dmis <- xgb.DMatrix(data = mis.data, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
if (is.null(pmm.type) | isTRUE(pmm.type == "auto")) {
obj.type <- "multi:softmax"
} else {
# use probability to do matching
obj.type <- "multi:softprob"
}
N.class <- length(levels(sorted.dt[[var]]))
xgb.fit <- xgb.train(
data = dobs, num_class = N.class,
objective = obj.type, watchlist = watchlist,
eval_metric = "mlogloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
# save models
xgb.models[[var]] <- xgb.fit
if (is.null(pmm.type) | isTRUE(pmm.type == "auto")) {
# use softmax, predict returns class
# for pmm.type=NULL or "auto"
yhatmis <- predict(xgb.fit, dmis)
yhatmis <- levels(sorted.dt[[var]])[yhatmis + 1]
sorted.dt[na.idx, (var) := yhatmis]
} else {
# predict returns probability matrix for each class
yhatmis <- predict(xgb.fit, dmis, reshape = TRUE)
if (pmm.type == 1) {
# for pmm.type=1
yhatobs <- yhatobs.list[[var]]
} else {
# for pmm.type=0 or 2
# probability matrix for each class
yhatobs <- predict(xgb.fit, dobs, reshape = TRUE)
yhatobs.list[[var]] <- yhatobs
}
yhatmis <- pmm.multiclass(yhatobs = yhatobs, yhatmis = yhatmis, yobs = yobs.list[[var]], k = pmm.k)
yhatmis <- levels(sorted.dt[[var]])[yhatmis]
sorted.dt[na.idx, (var) := yhatmis]
}
}
} # end of for each missing variable
# for extra variables---------------------------------------------------------------------------------------------
if (!is.null(extra.vars)) {
if (matrix.method == "as.matrix") {
All.m <- as.matrix(sorted.dt)
} else {
All.list <- lapply(sorted.names, function(feature) {
if (cbind.types[feature] %in% c("numeric", "integer")) {
as.matrix(sorted.dt[[feature]])
} else if (cbind.types[feature] == "ordered") {
Matrix::t(fac2Sparse(sorted.dt[[feature]], drop.unused.levels = FALSE, factorPatt12 = c(T, F), contrasts.arg = "contr.poly")[[1]])
} else {
Matrix::t(fac2sparse(sorted.dt[[feature]], drop.unused.levels = FALSE))[, -1, drop = FALSE]
}
})
if (matrix.method == "cpp.combo") {
All.m <- cbind_combo(All.list)
} else if (matrix.method == "cpp.factor") {
All.m <- cbind_sparse_matrix(All.list)
}
Ncol.list <- lapply(All.list, ncol)
end.idx <- cumsum(Ncol.list)
start.idx <- c(1, (end.idx + 1)[-length(end.idx)])
}
for (var in extra.vars) {
# features <- setdiff(sorted.names, var)
# form <- reformulate(termlabels = features, response = var)
obs.y <- yobs.list[[var]]
if (matrix.method == "as.matrix") {
var.idx <- all.idx[var]
} else {
v <- all.idx[var]
var.idx <- start.idx[v]:end.idx[v]
}
obs.data <- All.m[, -var.idx, drop = FALSE]
if (extra.types[var] == "numeric" | extra.types[var] == "integer") {
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
obj.type <- "reg:squarederror"
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
xgb.models[[var]] <- xgb.fit
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2) | isTRUE(pmm.type == "auto")) {
yhatobs.list[[var]] <- predict(xgb.fit, dobs)
}
} else if (extra.types[var] == "binary") {
obs.y <- as.integer(obs.y) - 1
bin.t <- sort(table(obs.y))
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
# when bin.t has two values: bin.t[1] minority class & bin.t[2] majority class
# when bin.t only has one value: bin.t[1] the only existent class
if (is.na(bin.t[2])) {
# this binary variable only has a single class being observed (e.g., observed values are all "0"s)
# skip xgboost training, just impute the only existent class
xgb.models[[var]] <- levels(sorted.dt[[var]])[as.integer(names(bin.t[1])) + 1]
yhatobs.list[[var]] <- rep(levels(sorted.dt[[var]])[as.integer(names(bin.t[1])) + 1], length(yobs.list[[var]]))
} else {
# general case
if (pmm.link == "logit") {
# pmm by "logit" value
obj.type <- "binary:logitraw"
} else {
# pmm by "prob" value
obj.type <- "binary:logistic"
}
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
eval_metric = "logloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
xgb.models[[var]] <- xgb.fit
# if pmm.link="logit", these would be logit values, otherwise would be probability values
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2)) {
yhatobs.list[[var]] <- predict(xgb.fit, dobs)
}
}
} else if (extra.types[var] == "logical") {
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
bin.t <- sort(table(obs.y))
# when bin.t has two values: bin.t[1] minority class & bin.t[2] majority class
# when bin.t only has one value: bin.t[1] the only existent class
if (is.na(bin.t[2])) {
# this binary variable only has a single class being observed (e.g., observed values are all "0"s)
# skip xgboost training, just impute the only existent class
xgb.models[[var]] <- as.logical(names(bin.t[1]))
yhatobs.list[[var]] <- rep(as.logical(names(bin.t[1])), length(yobs.list[[var]]))
} else {
# general case
if (pmm.link == "logit") {
# pmm by "logit" value
obj.type <- "binary:logitraw"
} else {
# pmm by "prob" value
obj.type <- "binary:logistic"
}
xgb.fit <- xgb.train(
data = dobs, objective = obj.type, watchlist = watchlist,
eval_metric = "logloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
xgb.models[[var]] <- xgb.fit
# if pmm.link="logit", these would be logit values, otherwise would be probability values
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2)) {
yhatobs.list[[var]] <- predict(xgb.fit, dobs)
}
}
} else {
# multiclass
obs.y <- as.integer(obs.y) - 1
dobs <- xgb.DMatrix(data = obs.data, label = obs.y, nthread = nthread)
if (is.null(early_stopping_rounds)) {
watchlist <- list(train = dobs)
} else {
watchlist <- list(train = dobs)
# to be done, have eval
# watchlist <- list(train = dobs,eval=dmis)
}
if (is.null(pmm.type) | isTRUE(pmm.type == "auto")) {
obj.type <- "multi:softmax"
} else {
# use probability to do matching
obj.type <- "multi:softprob"
}
N.class <- length(levels(sorted.dt[[var]]))
xgb.fit <- xgb.train(
data = dobs, num_class = N.class,
objective = obj.type, watchlist = watchlist,
eval_metric = "mlogloss",
params = xgb.params, nrounds = nrounds, early_stopping_rounds = early_stopping_rounds,
print_every_n = print_every_n, verbose = verbose, ...
)
xgb.models[[var]] <- xgb.fit
# prediction returns probability for matching: probability matrix for each class
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2)) {
yhatobs.list[[var]] <- predict(xgb.fit, dobs, reshape = TRUE)
}
}
} # end of for each extra variable
} # end of extra.vars
if (isTRUE(pmm.type == 0) | isTRUE(pmm.type == 2) | isTRUE(pmm.type == "auto")) {
return(list("sorted.dt" = sorted.dt, "xgb.models" = xgb.models, "yhatobs.list" = yhatobs.list))
} else {
# for pmm.type=NULL or pmm.type=1
return(list("sorted.dt" = sorted.dt, "xgb.models" = xgb.models))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.