Nothing
set.seed(3333)
startvalues_mpreg(rpois(30, 10), as.matrix(rexp(30)), as.matrix(rep(1,30)), "log", "log", "NB")
build_links_mpreg("log")
build_links_mpreg("inverse.sqrt")
expect_error(build_links_mpreg("logit"))
d2mudeta2("log", 1)
d2mudeta2("sqrt", 1)
d2phideta2("identity", 1)
d2phideta2("log", 1)
d2phideta2("inverse.sqrt", 1)
generate_data_mixpoisson(list(mean = 1, precision = 1), as.matrix(rep(1,30)), as.matrix(rep(1,30)), 1, "log", "log", "NB")
generate_data_mixpoisson(list(mean = 1, precision = 1), as.matrix(rep(1,30)), as.matrix(rep(1,30)), 1, "log", "log", "PIG")
suppressWarnings(envelope_mixpoisson("pearson", "EM", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "NB", em_controls = list(maxit = 1, em_tol = 10^(-1), em_tolgrad = 10^(-1)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("score", "EM", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "NB", em_controls = list(maxit = 1, em_tol = 10^(-1), em_tolgrad = 10^(-1)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("pearson", "ML", list(mean = c(exp(-1)), precision = 1), as.matrix(rep(1,30)), as.matrix(rep(1,30)), 2, 0.95, 30, "sqrt", "identity", "NB", em_controls = list(maxit = 1, em_tol = 10^(-1), em_tolgrad = 10^(-1)),
optim_method = "Nelder-Mead", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("score", "ML", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "NB", em_controls = list(maxit = 1, em_tol = 10^(-5), em_tolgrad = 10^(-2)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("pearson", "EM", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "PIG", em_controls = list(maxit = 1, em_tol = 10^(-5), em_tolgrad = 10^(-2)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("score", "EM", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "PIG", em_controls = list(maxit = 1, em_tol = 10^(-5), em_tolgrad = 10^(-2)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("pearson", "ML", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "PIG", em_controls = list(maxit = 1, em_tol = 10^(-5), em_tolgrad = 10^(-2)),
optim_method = "L-BFGS-B", optim_controls = list()))
suppressWarnings(envelope_mixpoisson("score", "ML", list(mean = c(1), precision = 1), as.matrix(rexp(30)), as.matrix(rep(1,30)), 2, 0.95, 30, "log", "log", "PIG", em_controls = list(maxit = 1, em_tol = 10^(-5), em_tolgrad = 10^(-2)),
optim_method = "L-BFGS-B", optim_controls = list()))
pearson_residual_mixpoisson(list(mean = 1, precision = 1), rexp(30), as.matrix(rep(1,30)), as.matrix(rep(1,30)), "log", "log", "NB")
pearson_residual_mixpoisson(list(mean = 1, precision = 1), rexp(30), as.matrix(rep(1,30)), as.matrix(rep(1,30)), "log", "log", "PIG")
score_residual_mixpoisson(list(mean = 1, precision = 1), rexp(30), as.matrix(rep(1,30)), as.matrix(rep(1,30)), "log", "log", "NB")
score_residual_mixpoisson(list(mean = 1, precision = 1), rexp(30), as.matrix(rep(1,30)), as.matrix(rep(1,30)), "log", "log", "PIG")
expect_warning(std_error_mixpoisson(list(mean = 1, precision = 1), rexp(30), as.matrix(rep(1,30)), as.matrix(rep(1,30)), "log", "log", "NB"))
lambda_r(1,1,1,"NB")
lambda_r(1,1,1,"PIG")
kappa_r(1,1,1,"NB")
lambda_r(1,1,1,"PIG")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.