View source: R/plotly_spEMN01.R
plotly_spEMN01 | R Documentation |
spEMsymlocN01
using plotly
.This is an updated version of plotlspEMN01
function by using plotly
. For technical details, please refer to plot.spEMN01
.
plotly_spEMN01(x, bw=x$bandwidth, knownpdf=dnorm, add.plot=FALSE, width = 3 , col.dens = NULL, col.hist = '#1f77b4', title = NULL , title.size = 15 , title.x = 0.5 , title.y = 0.95, xlab = "t" , xlab.size = 15 , xtick.size = 15, ylab = "Density" , ylab.size = 15 , ytick.size = 15, legend.text = "Densities" , legend.text.size = 15 , legend.size = 15)
x |
An object of class "spEMN01" as returned by spEMsymlocN01 |
bw |
Bandwidth for weighted kernel density estimation. |
knownpdf |
The known density of component 1, default to |
add.plot |
Set to TRUE to add to an existing plot. |
width |
Line width. |
col.dens |
Color of density lines. Number of colors specified needs to be consistent with number of components. |
col.hist |
Color of histogram. |
title |
Text of the main title. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab |
Label of X-axis. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab |
Label of Y-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
legend.text |
Title of legend. |
legend.text.size |
Size of the legend title. |
legend.size |
Size of legend. |
A plot of the density of the mixture
Didier Chauveau
Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in soil monitoring: A semi-parametric mixture approach, preprint (2013).
spEMsymlocN01
, plot.spEMN01
## Probit transform of p-values ## from a Beta-Uniform mixture model ## comparion of parametric and semiparametric EM fit ## Note: in actual situations n=thousands set.seed(50) n=300 # nb of multiple tests m=2 # 2 mixture components a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters z=sample(1:m, n, rep=TRUE, prob = lambda) p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values o <- order(p) cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1 p <- cpd[,2] # sorted p-values y <- qnorm(p) # probit transform of the pvalues # gaussian EM fit with component 1 constrained to N(0,1) s1 <- normalmixEM(y, mu=c(0,-4), mean.constr = c(0,NA), sd.constr = c(1,NA)) s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit plotly_spEMN01(s2 , add.plot = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.