Nothing
#' @title Acquisition Function Stochastic Confidence Bound
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_stochastic_cb
#'
#' @templateVar id stochastic_cb
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Lower / Upper Confidence Bound with lambda sampling and decay.
#' The initial \eqn{\lambda} is drawn from an uniform distribution between `min_lambda` and `max_lambda` or from an exponential distribution with rate `1 / lambda`.
#' \eqn{\lambda} is updated after each update by the formula `lambda * exp(-rate * (t %% period))`, where `t` is the number of times the acquisition function has been updated.
#'
#' While this acquisition function usually would be used within an asynchronous optimizer, e.g., [OptimizerAsyncMbo],
#' it can in principle also be used in synchronous optimizers, e.g., [OptimizerMbo].
#'
#' @section Parameters:
#' * `"lambda"` (`numeric(1)`)\cr
#' \eqn{\lambda} value for sampling from the exponential distribution.
#' Defaults to `1.96`.
#' * `"min_lambda"` (`numeric(1)`)\cr
#' Minimum value of \eqn{\lambda}for sampling from the uniform distribution.
#' Defaults to `0.01`.
#' * `"max_lambda"` (`numeric(1)`)\cr
#' Maximum value of \eqn{\lambda} for sampling from the uniform distribution.
#' Defaults to `10`.
#' * `"distribution"` (`character(1)`)\cr
#' Distribution to sample \eqn{\lambda} from.
#' One of `c("uniform", "exponential")`.
#' Defaults to `uniform`.
#' * `"rate"` (`numeric(1)`)\cr
#' Rate of the exponential decay.
#' Defaults to `0` i.e. no decay.
#' * `"period"` (`integer(1)`)\cr
#' Period of the exponential decay.
#' Defaults to `NULL`, i.e., the decay has no period.
#'
#' @section Note:
#' * This acquisition function always also returns its current (`acq_lambda`) and original (`acq_lambda_0`) \eqn{\lambda}.
#' These values will be logged into the [bbotk::ArchiveBatch] of the [bbotk::OptimInstanceBatch] of the [AcqOptimizer] and
#' therefore also in the [bbotk::Archive] of the actual [bbotk::OptimInstance] that is to be optimized.
#'
#' @references
#' * `r format_bib("snoek_2012")`
#' * `r format_bib("egele_2023")`
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' fun = function(xs) {
#' list(y = xs$x ^ 2)
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = default_gp()
#'
#' surrogate = srlrn(learner, archive = instance$archive)
#'
#' acq_function = acqf("stochastic_cb", surrogate = surrogate, lambda = 3)
#'
#' acq_function$surrogate$update()
#' acq_function$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionStochasticCB = R6Class("AcqFunctionStochasticCB",
inherit = AcqFunction,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param lambda (`numeric(1)`).
#' @param min_lambda (`numeric(1)`).
#' @param max_lambda (`numeric(1)`).
#' @param distribution (`character(1)`).
#' @param rate (`numeric(1)`).
#' @param period (`NULL` | `integer(1)`).
initialize = function(
surrogate = NULL,
lambda = 1.96,
min_lambda = 0.01,
max_lambda = 10,
distribution = "uniform",
rate = 0,
period = NULL
) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
private$.lambda = assert_number(lambda, lower = .Machine$double.neg.eps, null.ok = TRUE)
private$.min_lambda = assert_number(min_lambda, lower = .Machine$double.neg.eps, null.ok = TRUE)
private$.max_lambda = assert_number(max_lambda, lower = .Machine$double.neg.eps, null.ok = TRUE)
private$.distribution = assert_choice(distribution, choices = c("uniform", "exponential"))
if (private$.distribution == "uniform" && (is.null(private$.min_lambda) || is.null(private$.max_lambda))) {
stop('If `distribution` is "uniform", `min_lambda` and `max_lambda` must be set.')
}
if (private$.distribution == "exponential" && is.null(private$.lambda)) {
stop('If `distribution` is "exponential", `lambda` must be set.')
}
private$.rate = assert_number(rate, lower = 0)
private$.period = assert_int(period, lower = 1, null.ok = TRUE)
constants = ps(lambda = p_dbl(lower = 0))
super$initialize("acq_cb",
constants = constants,
surrogate = surrogate,
requires_predict_type_se = TRUE,
direction = "same",
label = "Stochastic Lower / Upper Confidence Bound",
man = "mlr3mbo::mlr_acqfunctions_stochastic_cb")
},
#' @description
#' Update the acquisition function.
#' Samples and decays lambda.
update = function() {
# sample lambda
if (is.null(self$constants$values$lambda)) {
if (private$.distribution == "uniform") {
lambda = runif(1, private$.min_lambda, private$.max_lambda)
} else {
lambda = rexp(1, 1 / private$.lambda)
}
private$.lambda_0 = lambda
self$constants$values$lambda = lambda
}
# decay lambda
if (private$.rate > 0) {
lambda_0 = private$.lambda_0
period = private$.period
t = if (is.null(period)) private$.t else private$.t %% period
rate = private$.rate
self$constants$values$lambda = lambda_0 * exp(-rate * t)
private$.t = t + 1L
}
},
#' @description
#' Reset the acquisition function.
#' Resets the private update counter `.t` used within the epsilon decay.
reset = function() {
private$.t = 0L
}
),
private = list(
.lambda = NULL,
.min_lambda = NULL,
.max_lambda = NULL,
.distribution = NULL,
.rate = NULL,
.period = NULL,
.lambda_0 = NULL,
.t = 0L,
.fun = function(xdt, lambda) {
p = self$surrogate$predict(xdt)
cb = p$mean - self$surrogate_max_to_min * lambda * p$se
data.table(acq_cb = cb, acq_lambda = lambda, acq_lambda_0 = private$.lambda_0)
}
)
)
mlr_acqfunctions$add("stochastic_cb", AcqFunctionStochasticCB)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.