Nothing
test_that("InputTrafoUnitcube works", {
instance = MAKE_INST_1D()
design = generate_design_random(instance$search_space, n = 4L)$data
instance$eval_batch(design)
it = InputTrafoUnitcube$new()
it$cols_x = instance$archive$cols_x
it$search_space = instance$archive$search_space
it$update(instance$archive$data)
expect_list(it$state, len = 0L)
data = instance$archive$data
orig_data = copy(data)
transformed_data = it$transform(data)
expect_true(all(apply(transformed_data[, instance$archive$cols_x, with = FALSE], MARGIN = 2L, FUN = min) >= 0))
expect_true(all(apply(transformed_data[, instance$archive$cols_x, with = FALSE], MARGIN = 2L, FUN = max) <= 1))
expect_false(address(data) == address(transformed_data))
expect_equal(data, orig_data)
})
test_that("InputTrafoUnitcube works with SurrogateLearner", {
instance = MAKE_INST_1D()
design = generate_design_random(instance$search_space, n = 4L)$data
instance$eval_batch(design)
surrogate = SurrogateLearner$new(REGR_KM_DETERM)
surrogate$archive = instance$archive
it = InputTrafoUnitcube$new()
surrogate$input_trafo = it
surrogate$update()
expect_list(it$state, len = 0L)
surrogate$predict(instance$archive$data)
})
test_that("InputTrafoUnitcube works with SurrogateLearnerCollection", {
instance = MAKE_INST(OBJ_1D_2, search_space = PS_1D, terminator = trm("evals", n_evals = 5L))
design = generate_design_random(instance$search_space, n = 4L)$data
instance$eval_batch(design)
surrogate = SurrogateLearnerCollection$new(list(REGR_KM_DETERM, REGR_KM_DETERM$clone(deep = TRUE)))
surrogate$archive = instance$archive
it = InputTrafoUnitcube$new()
surrogate$input_trafo = it
surrogate$update()
expect_list(it$state, len = 0L)
surrogate$predict(instance$archive$data)
})
test_that("InputTrafoUnitcube works with OptimizerMbo and bayesopt_ego", {
instance = MAKE_INST_1D()
surrogate = SurrogateLearner$new(REGR_KM_DETERM)
it = InputTrafoUnitcube$new()
surrogate$input_trafo = it
acq_function = AcqFunctionEI$new()
acq_optimizer = AcqOptimizer$new(opt("random_search", batch_size = 2L), terminator = trm("evals", n_evals = 2L))
optimizer = opt("mbo", loop_function = bayesopt_ego, surrogate = surrogate, acq_function = acq_function, acq_optimizer = acq_optimizer)
optimizer$optimize(instance)
expect_true(nrow(instance$archive$data) == 5L)
expect_data_table(instance$result, nrows = 1L)
})
test_that("InputTrafoUnitcube works with OptimizerMbo and bayesopt_parego", {
instance = MAKE_INST(OBJ_1D_2, search_space = PS_1D, terminator = trm("evals", n_evals = 5L))
surrogate = SurrogateLearner$new(REGR_KM_DETERM)
it = InputTrafoUnitcube$new()
surrogate$input_trafo = it
acq_function = AcqFunctionEI$new()
acq_optimizer = AcqOptimizer$new(opt("random_search", batch_size = 2L), terminator = trm("evals", n_evals = 2L))
optimizer = opt("mbo", loop_function = bayesopt_parego, surrogate = surrogate, acq_function = acq_function, acq_optimizer = acq_optimizer)
optimizer$optimize(instance)
expect_true(nrow(instance$archive$data) == 5L)
expect_data_table(instance$result, min.rows = 1L)
})
test_that("InputTrafoUnitcube works with OptimizerMbo and bayesopt_smsego", {
instance = MAKE_INST(OBJ_1D_2, search_space = PS_1D, terminator = trm("evals", n_evals = 5L))
surrogate = SurrogateLearnerCollection$new(list(REGR_KM_DETERM, REGR_KM_DETERM$clone(deep = TRUE)))
it = InputTrafoUnitcube$new()
surrogate$input_trafo = it
acq_function = AcqFunctionSmsEgo$new()
acq_optimizer = AcqOptimizer$new(opt("random_search", batch_size = 2L), terminator = trm("evals", n_evals = 2L))
optimizer = opt("mbo", loop_function = bayesopt_smsego, surrogate = surrogate, acq_function = acq_function, acq_optimizer = acq_optimizer)
optimizer$optimize(instance)
expect_true(nrow(instance$archive$data) == 5L)
expect_data_table(instance$result, min.rows = 1L)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.