Nothing
test_that("SurrogateLearnerCollection API works", {
inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L))
design = MAKE_DESIGN(inst)
inst$eval_batch(design)
surrogate = SurrogateLearnerCollection$new(learners = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive)
expect_r6(surrogate$archive, "Archive")
expect_equal(surrogate$cols_x, "x")
expect_equal(surrogate$cols_y, c("y1", "y2"))
surrogate$update()
expect_learner(surrogate$learner[[1L]])
expect_learner(surrogate$learner[[2L]])
xdt = data.table(x = seq(-1, 1, length.out = 5L))
pred = surrogate$predict(xdt)
expect_list(pred, len = 2L)
expect_data_table(pred[[1L]], col.names = "named", nrows = 5L, ncols = 2L, any.missing = FALSE)
expect_data_table(pred[[2L]], col.names = "named", nrows = 5L, ncols = 2L, any.missing = FALSE)
expect_named(pred[[1L]], c("mean", "se"))
expect_named(pred[[2L]], c("mean", "se"))
# upgrading error class works
surrogate = SurrogateLearnerCollection$new(learners = list(LearnerRegrError$new(), LearnerRegrError$new()), archive = inst$archive)
expect_error(surrogate$update(), class = "surrogate_update_error")
surrogate$param_set$values$catch_errors = FALSE
expect_error(surrogate$optimize(), class = "simpleError")
# predict_type
expect_equal(surrogate$predict_type, surrogate$learner[[1L]]$predict_type)
expect_equal(surrogate$predict_type, surrogate$learner[[2L]]$predict_type)
surrogate$learner[[1L]]$predict_type = "response"
expect_error({surrogate$predict_type}, "Learners have different active predict types")
surrogate$learner[[2L]]$predict_type = "response"
expect_equal(surrogate$predict_type, surrogate$learner[[1L]]$predict_type)
expect_equal(surrogate$predict_type, surrogate$learner[[2L]]$predict_type)
expect_error({surrogate$predict_type = "response"}, "is read-only")
})
test_that("predict_types are recognized", {
skip_if_not_installed("rpart")
inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L))
design = MAKE_DESIGN(inst)
inst$eval_batch(design)
learner1 = REGR_FEATURELESS$clone(deep = TRUE)
learner1$predict_type = "se"
learner2 = lrn("regr.rpart")
learner2$predict_type = "response"
surrogate = SurrogateLearnerCollection$new(learner = list(learner1, learner2), archive = inst$archive)
surrogate$update()
xdt = data.table(x = seq(-1, 1, length.out = 5L))
pred = surrogate$predict(xdt)
expect_named(pred[[1L]], c("mean", "se"))
expect_named(pred[[2L]], "mean")
})
test_that("param_set", {
inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L))
surrogate = SurrogateLearnerCollection$new(learner = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive)
expect_r6(surrogate$param_set, "ParamSet")
expect_setequal(surrogate$param_set$ids(), c("assert_insample_perf", "perf_measures", "perf_thresholds", "catch_errors"))
expect_equal(surrogate$param_set$class[["assert_insample_perf"]], "ParamLgl")
expect_equal(surrogate$param_set$class[["perf_measures"]], "ParamUty")
expect_equal(surrogate$param_set$class[["perf_thresholds"]], "ParamUty")
expect_equal(surrogate$param_set$class[["catch_errors"]], "ParamLgl")
expect_error({surrogate$param_set = list()}, regexp = "param_set is read-only.")
})
test_that("insample_perf", {
skip_if_not_installed("mlr3learners")
skip_if_not_installed("DiceKriging")
skip_if_not_installed("rgenoud")
inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L))
design = MAKE_DESIGN(inst)
inst$eval_batch(design)
surrogate = SurrogateLearnerCollection$new(learner = list(REGR_KM_DETERM, REGR_KM_DETERM$clone(deep = TRUE)), archive = inst$archive)
expect_error({surrogate$insample_perf = c(0, 0)}, regexp = "insample_perf is read-only.")
expect_error({surrogate$assert_insample_perf = 0}, regexp = "assert_insample_perf is read-only.")
surrogate$update()
expect_equal(surrogate$insample_perf, NaN)
surrogate$param_set$values$assert_insample_perf = TRUE
surrogate$param_set$values$perf_thresholds = c(0.5, 0.5)
surrogate$param_set$values$perf_measures = list(mlr_measures$get("regr.rsq"), mlr_measures$get("regr.rsq"))
surrogate$update()
expect_double(surrogate$insample_perf, lower = -Inf, upper = 1, any.missing = FALSE, len = 2L)
expect_equal(names(surrogate$insample_perf), map_chr(surrogate$param_set$values$perf_measures, "id"))
surrogate_constant = SurrogateLearnerCollection$new(learner = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive)
surrogate_constant$param_set$values$assert_insample_perf = TRUE
surrogate_constant$param_set$values$perf_thresholds = c(0.5, 0.5)
surrogate_constant$param_set$values$perf_measures = list(mlr_measures$get("regr.rsq"), mlr_measures$get("regr.rsq"))
expect_error(surrogate_constant$update(), regexp = "Current insample performance of the Surrogate Model does not meet the performance threshold")
expect_double(surrogate_constant$insample_perf, lower = -Inf, upper = 1, any.missing = FALSE, len = 2L)
expect_true(all(surrogate_constant$insample_perf <= 1e-3))
expect_equal(names(surrogate_constant$insample_perf), map_chr(surrogate$param_set$values$perf_measures, "id"))
})
test_that("unique in memory", {
learner = REGR_FEATURELESS
expect_error(SurrogateLearnerCollection$new(learners = list(learner, learner)), "Redundant Learners")
})
test_that("deep clone", {
inst = MAKE_INST(OBJ_1D_2, PS_1D, trm("evals", n_evals = 5L))
surrogate1 = SurrogateLearnerCollection$new(learners = list(REGR_FEATURELESS, REGR_FEATURELESS$clone(deep = TRUE)), archive = inst$archive)
surrogate2 = surrogate1$clone(deep = TRUE)
expect_true(address(surrogate1) != address(surrogate2))
expect_true(address(surrogate1$learner) != address(surrogate2$learner))
expect_true(address(surrogate1$archive) != address(surrogate2$archive))
inst$eval_batch(MAKE_DESIGN(inst))
expect_true(address(surrogate1$archive$data) != address(surrogate2$archive$data))
})
test_that("packages", {
skip_if_not_installed("mlr3learners")
skip_if_not_installed("DiceKriging")
surrogate = SurrogateLearnerCollection$new(learners = list(REGR_KM_DETERM, REGR_FEATURELESS))
expect_equal(surrogate$packages, unique(unlist(map(surrogate$learner, "packages"))))
})
test_that("feature types", {
skip_if_not_installed("mlr3learners")
skip_if_not_installed("DiceKriging")
surrogate = SurrogateLearnerCollection$new(learners = list(REGR_KM_DETERM, REGR_FEATURELESS))
expect_equal(surrogate$feature_types, Reduce(intersect, map(surrogate$learner, "feature_types")))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.