Nothing
#' @title Balanced Accuracy
#'
#' @details
#' The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets.
#' It is defined analogously to the definition in [sklearn](https://scikit-learn.org/).
#'
#' First, all sample weights \eqn{w_i} are normalized per class so that each class has the same influence:
#' \deqn{
#' \hat{w}_i = \frac{w_i}{\sum_{j=1}^n w_j \cdot \mathbf{1}(t_j = t_i)}.
#' }{
#' w_hat[i] = w[i] / sum((t == t[i]) * w[i]).
#' }
#' The Balanced Accuracy is then calculated as
#' \deqn{
#' \frac{1}{\sum_{i=1}^n \hat{w}_i} \sum_{i=1}^n \hat{w}_i \cdot \mathbf{1}(r_i = t_i).
#' }{
#' 1 / sum(w_hat) * sum((r == t) * w_hat).
#' }
#' This definition is equivalent to [acc()] with class-balanced sample weights.
#'
#' @references
#' `r format_bib("brodersen_2010", "guyon_2015")`
#'
#' @templateVar mid bacc
#' @template classif_template
#'
#' @inheritParams classif_params
#' @template classif_example
#' @export
bacc = function(truth, response, sample_weights = NULL, ...) {
assert_classif(truth, response = response)
if (is.null(sample_weights)) {
sample_weights = rep(1, length(truth))
} else {
assert_numeric(sample_weights, lower = 0, any.missing = FALSE)
}
label_weights = vapply(split(sample_weights, truth), sum, NA_real_)
sample_weights = sample_weights / label_weights[truth]
sample_weights[is.na(sample_weights)] = 0
sum((truth == response) * sample_weights) / sum(sample_weights)
}
#' @include measures.R
add_measure(bacc, "Balanced Accuracy", "classif", 0, 1, FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.