R/classif_bacc.R

Defines functions bacc

Documented in bacc

#' @title Balanced Accuracy
#'
#' @details
#' The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets.
#' It is defined analogously to the definition in [sklearn](https://scikit-learn.org/).
#'
#' First, all sample weights \eqn{w_i} are normalized per class so that each class has the same influence:
#' \deqn{
#'  \hat{w}_i = \frac{w_i}{\sum_{j=1}^n w_j \cdot \mathbf{1}(t_j = t_i)}.
#' }{
#'  w_hat[i] = w[i] / sum((t == t[i]) * w[i]).
#' }
#' The Balanced Accuracy is then calculated as
#' \deqn{
#'  \frac{1}{\sum_{i=1}^n \hat{w}_i} \sum_{i=1}^n \hat{w}_i \cdot \mathbf{1}(r_i = t_i).
#' }{
#'  1 / sum(w_hat) * sum((r == t) * w_hat).
#' }
#' This definition is equivalent to [acc()] with class-balanced sample weights.
#'
#' @references
#' `r format_bib("brodersen_2010", "guyon_2015")`
#'
#' @templateVar mid bacc
#' @template classif_template
#'
#' @inheritParams classif_params
#' @template classif_example
#' @export
bacc = function(truth, response, sample_weights = NULL, ...) {
  assert_classif(truth, response = response)
  if (is.null(sample_weights)) {
    sample_weights = rep(1, length(truth))
  } else {
    assert_numeric(sample_weights, lower = 0, any.missing = FALSE)
  }

  label_weights = vapply(split(sample_weights, truth), sum, NA_real_)
  sample_weights = sample_weights / label_weights[truth]
  sample_weights[is.na(sample_weights)] = 0

  sum((truth == response) * sample_weights) / sum(sample_weights)
}

#' @include measures.R
add_measure(bacc, "Balanced Accuracy", "classif", 0, 1, FALSE)

Try the mlr3measures package in your browser

Any scripts or data that you put into this service are public.

mlr3measures documentation built on Sept. 12, 2024, 7:20 a.m.