Nothing
#' @title Classification Error
#'
#' @details
#' The Classification Error is defined as \deqn{
#' \frac{1}{n} \sum_{i=1}^n w_i \mathbf{1} \left( t_i \neq r_i \right),
#' }{
#' 1 / n * sum(wi * 1(ti != ri)),
#' }
#' where \eqn{w_i} are normalized weights for each observation \eqn{x_i}.
#'
#' @templateVar mid ce
#' @template classif_template
#'
#' @inheritParams classif_params
#' @template classif_example
#' @export
ce = function(truth, response, sample_weights = NULL, ...) {
assert_classif(truth, response = response)
wmean(truth != response, sample_weights)
}
ce_cm = function(m, na_value = NaN) {
s = sum(m)
diag(m) = 0
sum(m) / s
}
#' @include measures.R
add_measure(ce, "Classification Error", "classif", 0, 1, TRUE, obs_loss = "zero_one")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.