Nothing
# ---- ETS, CROSTON ----
context("TEST exp_smoothing()")
# SETUP ----
# Data
m750 <- timetk::m4_monthly %>% dplyr::filter(id == "M750")
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.9)
# Model Spec
model_spec <- exp_smoothing() %>%
parsnip::set_engine("ets")
# ETS PARSNIP ----
# * NO XREGS ----
# TESTS
test_that("exp_smoothing: ets, Test Model Fit Object", {
skip_on_cran()
#
# Fit Spec
model_fit <- model_spec %>%
fit(log(value) ~ date, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
expect_s3_class(model_fit$fit, "ets_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "ets")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_null(model_fit$fit$extras$xreg_recipe)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# exp_smoothing: ets, Test Predictions
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 800)
})
# ---- ETS WORKFLOWS ----
# TESTS
test_that("exp_smoothing: Arima (workflow), Test Model Fit Object", {
skip_on_cran()
#
# Model Spec
model_spec <- exp_smoothing(
seasonal_period = 12,
error = "multiplicative", trend = "additive", season = "multiplicative"
,
smooth_level = 0.2, smooth_trend = 0.1, smooth_seasonal = 0.1
) %>%
parsnip::set_engine("ets")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE)
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits),
actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
expect_s3_class(wflw_fit$fit$fit$fit, "ets_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "ets")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_null(wflw_fit$fit$fit$fit$extras$xreg_recipe)
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
# exp_smoothing: ets (workflow), Test Predictions
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
# ---- CROSTON WORKFLOWS ----
# TESTS
test_that("exp_smoothing: CROSTON", {
skip_on_cran()
#
# Model Spec
model_spec <- exp_smoothing(
smooth_level = 0.2
) %>%
parsnip::set_engine("croston")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE)
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits),
actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
expect_s3_class(wflw_fit$fit$fit$fit, "croston_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "forecast")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_null(wflw_fit$fit$fit$fit$extras$xreg_recipe)
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 1000)
})
# ---- THETA WORKFLOWS ----
# TESTS
test_that("exp_smoothing: Theta", {
skip_on_cran()
#
# Model Spec
model_spec <- exp_smoothing() %>%
parsnip::set_engine("theta")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE)
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits),
actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
#
expect_s3_class(wflw_fit$fit$fit$fit, "theta_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "forecast")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_null(wflw_fit$fit$fit$fit$extras$xreg_recipe)
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
expect_lte(max(abs(resid)), 2408)
# - MAE less than 700
expect_lte(mean(abs(resid)), 805)
})
# SMOOTH PARSNIP ----
# * NO XREGS ----
# TESTS
test_that("exp_smoothing: smooth", {
skip_on_cran()
#
model_spec <- exp_smoothing() %>%
parsnip::set_engine("smooth_es")
# Fit Spec
model_fit <- model_spec %>%
fit(log(value) ~ date, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
#
expect_s3_class(model_fit$fit, "smooth_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "smooth")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_null(model_fit$fit$extras$xreg_recipe)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1395)
# - MAE less than 700
expect_lte(mean(abs(resid)), 750)
})
# * WORKFLOWS XREGS ----
# TESTS
test_that("exp_smoothing: Arima (workflow), Test Model Fit Object", {
skip_on_cran()
#
# Model Spec
model_spec <- exp_smoothing(
seasonal_period = 12,
error = "multiplicative", trend = "additive", season = "multiplicative"
,
smooth_level = 0.2, smooth_trend = 0.1, smooth_seasonal = 0.1
) %>%
parsnip::set_engine("smooth_es")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE) %>%
recipes::step_date(date, features = "month")
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
# xreg did not contain values for the holdout, so we had to predict missing values.
suppressWarnings({
wflw_fit <- wflw %>%
fit(rsample::training(splits))
})
# Forecast
suppressWarnings({
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits),
actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(c(.value, .conf_lo, .conf_hi), exp))
})
#
expect_s3_class(wflw_fit$fit$fit$fit, "smooth_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "smooth")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_true(!is.null(wflw_fit$fit$fit$fit$extras$xreg_recipe))
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
# exp_smoothing: ets (workflow), Test Predictions
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
# expect_lte(max(abs(resid)), 1395)
# - MAE less than 700
# expect_lte(mean(abs(resid)), 750)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.