R/normalization.R

Defines functions normFreqTC normFreqRPKM

Documented in normFreqRPKM normFreqTC

#' \code{normFreqRPKM} 
#' @title normFreqRPKM
#' @description converts a raw count matrix onto a frequency matrix using the RPKM normalization method.
#'        This method consists of two consecutive steps, first dividing the raw counts by the length of 
#'        the gene sequence and the second shrinking the signal per column to a sum of 1
#' @author Edi Prifti & Emmanuelle Le Chatelier
#' @param dat : raw counts data matrix with gene_ids as rownames
#' @param cat : the current working catalogue where the reads are mapped and counted, (i.e. hs_3.3_metahit, hs_3.9_metahit)
#'        This can also be a vector of genelength values that correspond to the number of rows in the dat matrix and are 
#'        ordered respectively
#' @return a normalized frequency matrix
normFreqRPKM <- function(dat, cat = NULL){
  # load the annotation datafile to extract the fragment size
  if(is.null(cat)){
    stop("cat should be provided as a vector containing the gene length of the catalog with the same names as the profile matrix.")
  }else{
    if(length(cat) != nrow(dat)){
      stop("cat should have the same length as the number of rows in the dat profile matrix.")
    }else{
      genesize <- cat[match(rownames(dat),names(cat))]
    }
  }
  
  if(is.matrix(dat)) print("The dataset is a matrix")
  else{ # transform the data.frame onto a matrix
    dat <- as.matrix(dat)
  }
  # divide by the genesize
  res <- dat
  for(i in 1:ncol(dat)) {
    res[,i] <- dat[,i]/genesize
  }  
  # divide by the total number of reads
  for(i in 1:ncol(res)) {
    res[,i] <- res[,i]/sum(res[,i])
  }
  return(res)
}


#' \code{normFreqTC} 
#' @title normFreqTC
#' @description converts a raw count matrix onto a frequency matrix using the TC (total count) normalization method.
#'        This method consists of scaling the signal by the total counts per each sample
#' @author Edi Prifti
#' @param dat : raw counts data matrix with gene_ids as rownames
#' @return a normalized frequency matrix
normFreqTC <- function(dat){
  if(is.matrix(dat)) print("The dataset is a matrix")
  else{ # transform the data.frame onto a matrix
    dat <- as.matrix(dat)
  }
  # divide by the genesize
  res <- dat
  # divide by the total number of reads
  for(i in 1:ncol(res)) {
    res[,i] <- res[,i]/sum(res[,i])
  }
  return(res)
}

#' ADD other normalization algorithms
#' End of section and file

Try the momr package in your browser

Any scripts or data that you put into this service are public.

momr documentation built on May 29, 2017, 5:47 p.m.