# R/01_PCT_BINNING.R In monobin: Monotonic Binning for Credit Rating Models

#### Documented in pct.bin

```#' Monotonic binning based on percentiles
#'
#' \code{pct.bin} implements percentile-based monotonic binning by the iterative discretization.
#'@param x Numeric vector to be binned.
#'@param y Numeric target vector (binary or continuous).
#'@param sc Numeric vector with special case elements. Default values are \code{c(NA, NaN, Inf, -Inf)}.
#' Recommendation is to keep the default values always and add new ones if needed. Otherwise, if these values exist
#' in \code{x} and are not defined in the \code{sc} list some statistics cannot be calculated properly.
#'@param sc.method Define how special cases will be treated, all together or in separate bins.
#' Possible values are \code{"together", "separately"}.
#'@param g Number of starting groups. Default is 15.
#'@param y.type Type of \code{y}, possible options are \code{"bina"} (binary) and \code{"cont"} (continuous).
#' If default value is passed, then algorithm will identify if y is 0/1 or continuous variable.
#'@param woe.trend Applied only for a continuous target (\code{y}) as weights of evidence (WoE) trend check. Default is TRUE.
#'@param force.trend If the expected trend should be forced. Possible values: \code{"i"} for
#' increasing trend (\code{y} increases with increase of \code{x}), \code{"d"} for decreasing trend
#' (\code{y} decreases with decrease of \code{x}). Default value is \code{NA}.
#' If the default value is passed, algorithm will stop if perfect negative or positive correlation (Spearman) is achieved
#' between average \code{y} and average \code{x} per bin. Otherwise, it will stop only if the forced trend is achieved.
#'
#'@return The command \code{pct.bin} generates a list of two objects. The first object, data frame \code{summary.tbl}
#' presents a summary table of final binning, while \code{x.trans} is a vector of discretized values.
#' In case of single unique value for \code{x} or \code{y} of complete cases (cases different than special cases),
#' it will return data frame with info.
#'
#'@examples
#' suppressMessages(library(monobin))
#' data(gcd)
#' #binary target
#' mat.bin <- pct.bin(x = gcd\$maturity, y = gcd\$qual)
#' mat.bin[[1]]
#' table(mat.bin[[2]])
#' #continuous target, separate groups for special cases
#' set.seed(123)
#' gcd\$age.d <- gcd\$age
#' gcd\$age.d[sample(1:nrow(gcd), 10)] <- NA
#' gcd\$age.d[sample(1:nrow(gcd), 3)] <- 9999999999
#' age.d.bin <- pct.bin(x = gcd\$age.d,
#' 			   	y = gcd\$qual,
#' 			   	sc = c(NA, NaN, Inf, -Inf, 9999999999),
#' 			  	sc.method = "separately",
#' 			   	force.trend = "d")
#' age.d.bin[[1]]
#' gcd\$age.d.bin <- age.d.bin[[2]]
#' gcd %>% group_by(age.d.bin) %>% summarise(n = n(), y.avg = mean(qual))
#'
#'@importFrom stats cor isoreg pt sd weighted.mean
#'@importFrom Hmisc cut2
#'@import dplyr
#'@export
pct.bin <- function(x, y, sc = c(NA, NaN, Inf, -Inf), sc.method = "together", g = 15,
y.type = NA, woe.trend = TRUE, force.trend = NA) {
ops <- options(scipen = 20)
on.exit(options(ops))

if	(!is.logical(woe.trend)) {
stop("woe.trend has to be logical: TRUE or FALSE")
}
checks.init(x = x, y = y, sc = sc, sc.method = sc.method,
y.type = y.type, force.trend = force.trend)

d <- data.frame(y, x)
d <- d[!is.na(y), ]
d.sc <- d[d\$x%in%sc, ]
d.cc <- d[!d\$x%in%sc, ]

checks.res <- checks.iter(d = d, d.cc = d.cc, y.type = y.type)
if	(checks.res[[1]] > 0) {
return(eval(parse(text = checks.res[[2]])))
}
y.check <- checks.res[[3]]

if	(y.check == "bina") {
ds <- pct.bin.bina(tbl.sc = d.sc, tbl.cc = d.cc,
method = sc.method, g = g, force.trend = force.trend)
} else {
ds <- pct.bin.cont(tbl.sc = d.sc, tbl.cc = d.cc,
method = sc.method, g = g, woe.trend = woe.trend,
force.trend = force.trend)
}
sc.u <- unique(sc)
sc.g <- ds\$bin[ds\$type%in%"special cases"]
x.mins <- ds\$x.min[!ds\$bin%in%sc.u & !ds\$bin%in%"SC"]
x.maxs <- ds\$x.max[!ds\$bin%in%sc.u & !ds\$bin%in%"SC"]
x.trans <- slice.variable(x.orig = d\$x, x.lb = x.mins, x.ub = x.maxs,
sc.u = sc.u, sc.g = sc.g)
return(list(summary.tbl = ds, x.trans = x.trans))
}

#formatting bins
format.bin <- function(x.lb, x.ub) {
x.lb[1] <- -Inf
x.lb.lag <- c(x.lb[-1], Inf)
bin.n <- sprintf("%02d", 1:length(x.lb))
bin.f <- ifelse(abs(x.lb - x.ub) < 1e-8,
paste0(bin.n, " [", round(x.lb, 4), "]"),
ifelse(x.lb == -Inf,
paste0(bin.n, " (", round(x.lb, 4), ",", round(x.lb.lag, 4), ")"),
paste0(bin.n, " [", round(x.lb, 4), ",", round(x.lb.lag, 4), ")")))
return(bin.f)
}
#summary binary
tbl.summary.bina <- function(tbl, g.tot, b.tot) {
tbl %>%
group_by(bin) %>%
summarise(
no = n(),
y.sum = sum(y),
y.avg = mean(y),
x.avg = mean(x),
x.min = min(x),
x.max = max(x)) %>%
ungroup() %>%
mutate(
so = g.tot + b.tot,
sg = g.tot,
sb = b.tot,
dist.g = (no - y.sum) / sg,
dist.b = y.sum / sb,
woe = log(dist.g / dist.b),
iv.b = (dist.g - dist.b) * woe)
}
#binning binary
pct.bin.bina <- function(tbl.sc, tbl.cc, method, g, force.trend) {
y.tot <- nrow(tbl.sc) + nrow(tbl.cc)
b.tot <- sum(tbl.sc\$y) + sum(tbl.cc\$y)
g.tot <- y.tot - b.tot
#special cases
if	(nrow(tbl.sc) > 0) {
if	(method == "together") {
tbl.sc\$bin <- "SC"
} else {
tbl.sc\$bin <- as.character(tbl.sc\$x)
}
tbl.sc.s <- tbl.summary.bina(tbl = tbl.sc, g.tot = g.tot, b.tot = b.tot)
tbl.sc.s\$type <- "special cases"
} else {
tbl.sc.s <- data.frame()
}
#complete cases
if	(!is.na(force.trend) & force.trend == "i") {
cond.exp <- "isTRUE(all.equal(cor.coef, 1)) | g == 1"
}
if	(!is.na(force.trend) & force.trend == "d") {
cond.exp <- "isTRUE(all.equal(cor.coef, -1)) | g == 1"
}
if	(is.na(force.trend)) {
cond.exp <- "isTRUE(all.equal(cor.coef, 1)) | isTRUE(all.equal(cor.coef, -1)) | g == 1"
}
repeat {
tbl.cc\$bin = cut2(tbl.cc\$x, g = g)
tbl.cc.s <- tbl.summary.bina(tbl = tbl.cc, g.tot = g.tot, b.tot = b.tot)
if	(nrow(tbl.cc.s) == 1) {break}
cor.coef <- cor(tbl.cc.s\$y.avg, tbl.cc.s\$x.avg, method = "spearman", use = "complete.obs")
if	(eval(parse(text = cond.exp))) {break}
g <- g - 1
}
tbl.cc.s\$bin <- format.bin(x.lb = tbl.cc.s\$x.min, x.ub = tbl.cc.s\$x.max)
tbl.cc.s\$type <- "complete cases"
tbl.s <- bind_rows(tbl.sc.s, tbl.cc.s)
return(as.data.frame(tbl.s))
}
#summary continuous
tbl.summary.cont <- function(tbl, n.tot, y.tot) {
tbl %>%
group_by(bin) %>%
summarise(
no = n(),
y.sum = sum(y),
y.avg = mean(y),
x.avg = mean(x),
x.min = min(x),
x.max = max(x)) %>%
ungroup() %>%
mutate(
so = n.tot,
sy = y.tot,
pct.obs = no / n.tot,
pct.y.sum = y.sum / y.tot,
woe = log(pct.y.sum / pct.obs),
iv.b = (pct.y.sum - pct.obs) * woe)
}
#binning continuous
pct.bin.cont <- function(tbl.sc, tbl.cc, method, g, woe.trend, force.trend) {
n.tot <- nrow(tbl.sc) + nrow(tbl.cc)
y.tot <- sum(tbl.sc\$y) + sum(tbl.cc\$y)
#special cases
if	(nrow(tbl.sc) > 0) {
if	(method == "together") {
tbl.sc\$bin <- "SC"
} else {
tbl.sc\$bin <- as.character(tbl.sc\$x)
}
tbl.sc.s <- tbl.summary.cont(tbl = tbl.sc, n.tot = n.tot, y.tot = y.tot)
tbl.sc.s\$type <- "special cases"
} else {
tbl.sc.s <- data.frame()
}
#complete cases
if	(!is.na(force.trend) & force.trend == "i") {
cond.exp.1 <- "isTRUE(all.equal(cor.coef, 1)) | g == 1"
cond.exp.2 <- "all(diff(tbl.cc.s\$woe) > 0)"
}
if	(!is.na(force.trend) & force.trend == "d") {
cond.exp.1 <- "isTRUE(all.equal(cor.coef, -1)) | g == 1"
cond.exp.2 <- "all(diff(tbl.cc.s\$woe) < 0)"
}
if	(is.na(force.trend)) {
cond.exp.1 <- "isTRUE(all.equal(cor.coef, 1)) | isTRUE(all.equal(cor.coef, -1)) | g == 1"
cond.exp.2 <- "all(diff(tbl.cc.s\$woe) > 0) | all(diff(tbl.cc.s\$woe) < 0)"
}
repeat {
tbl.cc\$bin = cut2(tbl.cc\$x, g = g)
tbl.cc.s <- tbl.summary.cont(tbl = tbl.cc, n.tot = n.tot, y.tot = y.tot)
if	(nrow(tbl.cc.s) == 1) {break}
if	(woe.trend) {
monocheck <- eval(parse(text = cond.exp.2))
} else {
cor.coef <- cor(tbl.cc.s\$y.avg, tbl.cc.s\$x.avg, method = "spearman", use = "complete.obs")
monocheck <- eval(parse(text = cond.exp.1))
}
if(monocheck | g == 1) {break}
g <- g - 1
}
tbl.cc.s\$bin <- format.bin(tbl.cc.s\$x.min, tbl.cc.s\$x.max)
tbl.cc.s\$type <- "complete cases"
tbl.s <- bind_rows(tbl.sc.s, tbl.cc.s)
return(as.data.frame(tbl.s))
}
#transform x vector
slice.variable <- function(x.orig, x.lb, x.ub, sc.u, sc.g) {
lx <- length(x.orig)
lg <- length(x.lb)
x.trans <- x.orig
if	(length(sc.g) > 0) {
if	("SC"%in%sc.g) {
x.trans[x.trans%in%sc.u] <- "SC"
}
}
x.lb[1] <- -Inf
x.lb.lag <- c(x.lb[-1], Inf)
for	(i in 1:lg) {
x.lb.l <- x.lb[i]
x.lb.lag.l <- x.lb.lag[i]
x.ub.l <- x.ub[i]
bin.n <- sprintf("%02d", i)
bin.f <- ifelse(abs(x.lb.l - x.ub.l) < 1e-8,
paste0(bin.n, " [", round(x.lb.l, 4), "]"),
ifelse(x.lb.l == -Inf,
paste0(bin.n, " (", round(x.lb.l, 4), ",", round(x.lb.lag.l, 4), ")"),
paste0(bin.n, " [", round(x.lb.l, 4), ",", round(x.lb.lag.l, 4), ")")))
rep.indx <- which(!x.orig%in%sc.u & !x.orig%in%sc.g & x.orig >= x.lb.l & x.orig <= x.ub.l)
x.trans[rep.indx] <- bin.f
}
return(x.trans)
}

```

## Try the monobin package in your browser

Any scripts or data that you put into this service are public.

monobin documentation built on April 18, 2022, 5:07 p.m.