Nothing
"sci.ratioI" <-
function(Response, Treatment, Num.Contrast, Den.Contrast, alternative = 'two.sided', conf.level = 0.95,
method="Plug") {
CMat <- Num.Contrast
DMat <- Den.Contrast
n.Treat <- tapply(Response,Treatment,length)
Mean.Treat <- tapply(Response,Treatment,mean)
Var.Treat <- tapply(Response,Treatment,var)
if(!is.numeric(conf.level) | length(conf.level)!=1 | conf.level<=0.5 | conf.level>=1)
{stop("Argument 'conf.level' must be a single numeric value between 0.5 and 1")}
if(any( sqrt(Var.Treat) < 10 * .Machine$double.eps * abs(Mean.Treat)))
{warning("Data are essentially constant in a least one group")}
if(any( n.Treat < 2 ))
{warning("There are less than 2 observations in a least one group")}
degree.f <- sum(n.Treat-1)
Pooled.Var <- sum( (n.Treat - 1)*Var.Treat)/degree.f
M <- diag(1/n.Treat) # Diagonal matrix containing reciprocals of the ni"s
n.comp <- nrow (CMat) # Number of comparisons
# print(cbind(n.Treat,Mean.Treat))
gammaC.vec <- CMat%*%Mean.Treat/DMat%*%Mean.Treat # MLE of the ratios
CorrMat.plug <- matrix(as.numeric(rep(NA,n.comp*n.comp)),nrow=n.comp)
for(i in 1:n.comp) {
for(j in 1:n.comp) {
CorrMat.plug[i,j] <- (gammaC.vec[i]*DMat[i,] - CMat[i,])%*%M%*%(gammaC.vec[j]*DMat[j,] - CMat[j,])/
(sqrt((gammaC.vec[i]*DMat[i,] - CMat[i,])%*%M%*%(gammaC.vec[i]*DMat[i,] - CMat[i,]))*
sqrt((gammaC.vec[j]*DMat[j,] - CMat[j,])%*%M%*%(gammaC.vec[j]*DMat[j,] - CMat[j,])))
}
}
Quad.root <- function(Aj, Bj, Cj, alternative) {
Discrimi <- Bj^2 - 4 * Aj * Cj
switch(alternative,
"two.sided"={
if ((Aj > 0) & (Discrimi >= 0)) {
lower <- (-Bj - sqrt(Discrimi))/(2 * Aj)
upper <- (-Bj + sqrt(Discrimi))/(2 * Aj)
Limit.s <- c(lower, upper)
}
else{ Limit.s <- c(NA, NA)}},
"less"={
if ((Aj > 0) & (Discrimi >= 0)) {
upper <- (-Bj + sqrt(Discrimi))/(2 * Aj)
Limit.s <- c(upper)
}
else{ Limit.s <- c(NA)}},
"greater"={
if ((Aj > 0) & (Discrimi >= 0)) {
lower <- (-Bj - sqrt(Discrimi))/(2 * Aj)
Limit.s <- c(lower)
}
else{ Limit.s <- c(NA)}})
return(Limit.s)
}
# Quad.root <- function(Aj, Bj, Cj){
# Discrimi <- Bj^2 - 4*Aj*Cj
# if ((Aj > 0)&(Discrimi >= 0)) Limit.s <- (-Bj + plus.minus*sqrt(Discrimi))/(2*Aj)
# else Limit.s <- as.numeric(NA)
# return(Limit.s)}
switch(method,
# UNADJUSTED CI:
Unadj =
{
if (alternative=="two.sided"){
side <- 2
cpUAd <- qt(1- (1-conf.level)/(side), degree.f, lower.tail = TRUE)
}
if ((alternative=="less")|(alternative=="greater")){
side <- 1
cpUAd <- qt(1- (1-conf.level)/(side), degree.f, lower.tail = TRUE)
}
UAdCL <- matrix(as.numeric(rep(NA,side*n.comp)),nrow=n.comp)
for(j in 1:n.comp)
{
AjUAd <- (DMat[j,]%*%Mean.Treat)^2 - (cpUAd^2)*Pooled.Var*DMat[j,]%*%M%*%DMat[j,]
BjUAd <- -2*((CMat[j,]%*%Mean.Treat)*(DMat[j,]%*%Mean.Treat) -
(cpUAd^2)*Pooled.Var*CMat[j,]%*%M%*%DMat[j,])
CjUAd <- (CMat[j,]%*%Mean.Treat)^2 - (cpUAd^2)*Pooled.Var*CMat[j,]%*%M%*%CMat[j,]
UAdCL[j,] <- Quad.root(AjUAd, BjUAd, CjUAd, alternative=alternative)
}
sci.table <- data.frame( UAdCL)
df <- degree.f; critp <- cpUAd
},
# Bonferroni-adjustment
Bonf =
{
if (alternative=="two.sided"){
side <- 2
cpBon <- qt(1- (1-conf.level)/(side*n.comp), degree.f, lower.tail = TRUE)
} # End of two-sided CI
if ((alternative=="less")|(alternative=="greater")){
side <- 1
cpBon <- qt(1- (1-conf.level)/(side*n.comp), degree.f, lower.tail = TRUE)
} # End of one-sided CI
BonCL <- matrix(as.numeric(rep(NA,side*n.comp)),nrow=n.comp)
for(j in 1:n.comp)
{
AjBon <- (DMat[j,]%*%Mean.Treat)^2 - (cpBon^2)*Pooled.Var*DMat[j,]%*%M%*%DMat[j,]
BjBon <- -2*((CMat[j,]%*%Mean.Treat)*(DMat[j,]%*%Mean.Treat) -
(cpBon^2)*Pooled.Var*CMat[j,]%*%M%*%DMat[j,])
CjBon <- (CMat[j,]%*%Mean.Treat)^2 - (cpBon^2)*Pooled.Var*CMat[j,]%*%M%*%CMat[j,]
BonCL[j,] <- Quad.root(AjBon, BjBon, CjBon, alternative=alternative)
}
sci.table <- data.frame(BonCL)
df <- degree.f; critp <- cpBon
},
# MtI: Sidak or Slepian for two-sided or one-sided CI
MtI =
{
if (alternative=="two.sided"){
side <- 2
cpMtI <- qmvt(conf.level, interval=c(0,10),df=as.integer(degree.f),corr=diag(n.comp),delta=rep(0,n.comp), tail="both", abseps=1e-05)$quantile
} # End of two-sided CI
if ((alternative=="less")|(alternative=="greater")){
side <- 1
cpMtI <- qmvt(conf.level, interval=c(0,10),df=as.integer(degree.f),corr=diag(n.comp),delta=rep(0,n.comp),
tail="lower.tail", abseps=1e-05)$quantile
} # End of one-sided CI
MtICL <- matrix(as.numeric(rep(NA,side*n.comp)),nrow=n.comp)
for(j in 1:n.comp)
{
AjMtI <- (DMat[j,]%*%Mean.Treat)^2 - (cpMtI^2)*Pooled.Var*DMat[j,]%*%M%*%DMat[j,]
BjMtI <- -2*((CMat[j,]%*%Mean.Treat)*(DMat[j,]%*%Mean.Treat) -
(cpMtI^2)*Pooled.Var*CMat[j,]%*%M%*%DMat[j,])
CjMtI <- (CMat[j,]%*%Mean.Treat)^2 - (cpMtI^2)*Pooled.Var*CMat[j,]%*%M%*%CMat[j,]
MtICL[j,] <- Quad.root(AjMtI, BjMtI, CjMtI, alternative=alternative)
}
sci.table <- data.frame(MtICL)
df <- as.integer(degree.f); critp <- cpMtI
},
# Plug in of ratio estimates
Plug =
{
if (alternative=="two.sided"){
side <- 2
Cplug <- qmvt(conf.level, interval=c(0,10),df=as.integer(degree.f),corr=CorrMat.plug,delta=rep(0,n.comp), tail="both", abseps=1e-05)$quantile
} # End of two-sided CI
if ((alternative=="less")|(alternative=="greater")){
side <- 1
Cplug <- qmvt(conf.level, interval=c(0,10),df=as.integer(degree.f),corr=CorrMat.plug,delta=rep(0,n.comp),
tail="lower.tail", abseps=1e-05)$quantile
} # End of one-sided CI
PlugCL <- matrix(as.numeric(rep(NA,side*n.comp)),nrow=n.comp)
for(j in 1:n.comp)
{
AjPlug <- (DMat[j,]%*%Mean.Treat)^2 - (Cplug^2)*Pooled.Var*DMat[j,]%*%M%*%DMat[j,]
BjPlug <- -2*((CMat[j,]%*%Mean.Treat)*(DMat[j,]%*%Mean.Treat) -
(Cplug^2)*Pooled.Var*CMat[j,]%*%M%*%DMat[j,])
CjPlug <- (CMat[j,]%*%Mean.Treat)^2 - (Cplug^2)*Pooled.Var*CMat[j,]%*%M%*%CMat[j,]
PlugCL[j,] <- Quad.root(AjPlug, BjPlug, CjPlug, alternative=alternative)
}
sci.table <- data.frame(PlugCL)
df <- as.integer(degree.f); critp <- Cplug
}
)
if (alternative=="two.sided")
{
names(sci.table) <- c("lower","upper")
}
if (alternative=="less")
{
names(sci.table) <- c("upper")
}
if (alternative=="greater")
{
names(sci.table) <- c("lower")
}
if( any(CorrMat.plug<0) && method=="MtI" && alternative!="two.sided")
{
warning(paste("At least one element of the estimated correlation matrix is negative, therefore, according to Slepian inequality, the MtI method might yield incorrect estimates."))
}
if (any(is.na(sci.table))){NSD <- TRUE}
else{NSD <- FALSE}
list(
estimate=gammaC.vec,
CorrMat.est=CorrMat.plug,
Num.Contrast=CMat,
Den.Contrast=DMat,
conf.int=sci.table,
NSD=NSD,
method=method,
alternative=alternative,
conf.level=conf.level,
df=df,
quantile=critp
)
} # END OF sci.ratioI
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.