R/deltamethod.R

Defines functions deltamethod

Documented in deltamethod

#' The delta method
#' 
#' Delta method for approximating the standard error of a transformation
#' \eqn{g(X)} of a random variable \eqn{X = (x_1, x_2, \ldots)}{X = (x1, x2,
#' \ldots)}, given estimates of the mean and covariance matrix of \eqn{X}.
#' 
#' The delta method expands a differentiable function of a random variable
#' about its mean, usually with a first-order Taylor approximation, and then
#' takes the variance. For example, an approximation to the covariance matrix
#' of \eqn{g(X)} is given by
#' 
#' \deqn{ Cov(g(X)) = g'(\mu) Cov(X) [g'(\mu)]^T }{ Cov(g(X)) = g'(mu) Cov(X)
#' [g'(mu)]^T }
#' 
#' where \eqn{\mu}{mu} is an estimate of the mean of \eqn{X}.  This function
#' uses symbolic differentiation via \code{\link{deriv}}.
#' 
#' A limitation of this function is that variables created by the user are not
#' visible within the formula \code{g}.  To work around this, it is necessary
#' to build the formula as a string, using functions such as \code{sprintf},
#' then to convert the string to a formula using \code{as.formula}.  See the
#' example below.
#' 
#' If you can spare the computational time, bootstrapping is a more accurate
#' method of calculating confidence intervals or standard errors for
#' transformations of parameters. See \code{\link{boot.msm}}.  Simulation from
#' the asymptotic distribution of the MLEs (see e.g. Mandel 2013) is also a
#' convenient alternative.
#' 
#' @param g A formula representing the transformation. The variables must be
#' labelled \code{x1, x2,\dots{}} For example,
#' 
#' \code{~ 1 / (x1 + x2)}
#' 
#' If the transformation returns a vector, then a list of formulae representing
#' (\eqn{g_1, g_2, \ldots}{g1, g2, \ldots}) can be provided, for example
#' 
#' \code{list( ~ x1 + x2, ~ x1 / (x1 + x2) )}
#' @param mean The estimated mean of \eqn{X}
#' @param cov The estimated covariance matrix of \eqn{X}
#' @param ses If \code{TRUE}, then the standard errors of \eqn{g_1(X),
#' g_2(X),\ldots}{g1(X), g2(X),\ldots} are returned. Otherwise the covariance
#' matrix of \eqn{g(X)} is returned.
#' @return A vector containing the standard errors of \eqn{g_1(X), g_2(X),
#' \ldots}{g1(X), g2(X), \ldots} or a matrix containing the covariance of
#' \eqn{g(X)}.
#' @author C. H. Jackson \email{chris.jackson@@mrc-bsu.cam.ac.uk}
#' @references Oehlert, G. W. (1992) \emph{A note on the delta method}.
#' American Statistician 46(1).
#' 
#' Mandel, M. (2013) \emph{Simulation based confidence intervals for functions
#' with complicated derivatives.} The American Statistician 67(2):76-81.
#' @keywords math
#' @examples
#' 
#' 
#' ## Simple linear regression, E(y) = alpha + beta x 
#' x <- 1:100
#' y <- rnorm(100, 4*x, 5)
#' toy.lm <- lm(y ~ x)
#' estmean <- coef(toy.lm)
#' estvar <- summary(toy.lm)$cov.unscaled * summary(toy.lm)$sigma^2
#' 
#' ## Estimate of (1 / (alphahat + betahat))
#' 1 / (estmean[1] + estmean[2])
#' ## Approximate standard error
#' deltamethod (~ 1 / (x1 + x2), estmean, estvar) 
#' 
#' ## We have a variable z we would like to use within the formula.
#' z <- 1
#' ## deltamethod (~ z / (x1 + x2), estmean, estvar) will not work.
#' ## Instead, build up the formula as a string, and convert to a formula.
#' form <- sprintf("~ %f / (x1 + x2)", z)
#' form
#' deltamethod(as.formula(form), estmean, estvar)
#' 
#' 
#' @export deltamethod
deltamethod <- function(g,       # a formula or list of formulae (functions) giving the transformation g(x) in terms of x1, x2,  etc
                        mean,    # mean, or maximum likelihood estimate, of x
                        cov,     # covariance matrix of x
                        ses=TRUE # return standard errors, else return covariance matrix
                        )
  {
      ## Var (G(x))  =  G'(mu) Var(X) G'(mu)^T
      cov <- as.matrix(cov)
      n <- length(mean)
      if (!is.list(g))
        g <- list(g)
      if ( (dim(cov)[1] != n) || (dim(cov)[2] != n) )
        stop(paste("Covariances should be a ", n, " by ", n, " matrix"))
      syms <- paste("x",1:n,sep="")
      for (i in 1:n)
        assign(syms[i], mean[i])
      gdashmu <- t(sapply(g,
                          function( form ) {
                              as.numeric(attr(eval(
                                                   ## Differentiate each formula in the list
                                                   deriv(form, syms)
                                                   ## evaluate the results at the mean
                                                   ), "gradient"))
                              ## and build the results row by row into a Jacobian matrix
                          }))
      new.covar <- gdashmu %*% cov %*% t(gdashmu)
      if (ses){
          new.se <- sqrt(diag(new.covar))
          new.se
      }
      else
        new.covar
  }

Try the msm package in your browser

Any scripts or data that you put into this service are public.

msm documentation built on Oct. 5, 2024, 1:07 a.m.