Nothing
params <-
list(family = "red")
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width=6, fig.height=4)
library(multivarious)
library(ggplot2)
## ----basic_example_setup------------------------------------------------------
set.seed(123)
X <- as.matrix(iris[, 1:4]) # 150 samples x 4 features
# Create 5-fold cross-validation splits
K <- 5
fold_ids <- sample(rep(1:K, length.out = nrow(X)))
folds <- lapply(1:K, function(k) list(
train = which(fold_ids != k),
test = which(fold_ids == k)
))
## ----basic_example_functions--------------------------------------------------
fit_pca <- function(train_data, ncomp) {
pca(train_data, ncomp = ncomp, preproc = center())
}
measure_reconstruction <- function(model, test_data) {
# Project test data to score space
scores <- project(model, test_data)
# Reconstruct: scores %*% t(loadings), then reverse centering
recon <- scores %*% t(model$v)
recon <- inverse_transform(model$preproc, recon)
# Compute RMSE
rmse <- sqrt(mean((test_data - recon)^2))
tibble::tibble(rmse = rmse)
}
## ----basic_example_cv---------------------------------------------------------
results_list <- lapply(1:4, function(nc) {
cv_res <- cv_generic(
data = X,
folds = folds,
.fit_fun = fit_pca,
.measure_fun = measure_reconstruction,
fit_args = list(ncomp = nc),
backend = "serial"
)
# Extract RMSE from each fold and average
fold_rmse <- sapply(cv_res$metrics, function(m) m$rmse)
data.frame(ncomp = nc, rmse = mean(fold_rmse))
})
cv_results <- do.call(rbind, results_list)
print(cv_results)
## ----understanding_output-----------------------------------------------------
# Run CV once to inspect the structure
cv_example <- cv_generic(
X, folds,
.fit_fun = fit_pca,
.measure_fun = measure_reconstruction,
fit_args = list(ncomp = 2)
)
# Structure overview
str(cv_example, max.level = 1)
# Extract metrics from all folds
all_metrics <- dplyr::bind_rows(cv_example$metrics)
print(all_metrics)
## ----preprocessing_comparison-------------------------------------------------
prep_center <- center()
prep_zscore <- colscale(center(), type = "z")
fit_with_prep <- function(train_data, ncomp, preproc) {
pca(train_data, ncomp = ncomp, preproc = preproc)
}
# Compare both strategies with 3 components
cv_center <- cv_generic(
X, folds,
.fit_fun = fit_with_prep,
.measure_fun = measure_reconstruction,
fit_args = list(ncomp = 3, preproc = prep_center)
)
cv_zscore <- cv_generic(
X, folds,
.fit_fun = fit_with_prep,
.measure_fun = measure_reconstruction,
fit_args = list(ncomp = 3, preproc = prep_zscore)
)
rmse_center <- mean(sapply(cv_center$metrics, `[[`, "rmse"))
rmse_zscore <- mean(sapply(cv_zscore$metrics, `[[`, "rmse"))
cat("Center only - RMSE:", round(rmse_center, 4), "\n")
cat("Z-score - RMSE:", round(rmse_zscore, 4), "\n")
## ----parallel_cv, eval=FALSE--------------------------------------------------
# # Setup parallel backend
# library(future)
# plan(multisession, workers = 4)
#
# # Run CV in parallel
# cv_parallel <- cv_generic(
# X,
# folds = folds,
# .fit_fun = fit_pca,
# .measure_fun = measure_pca,
# fit_args = list(ncomp = 4),
# backend = "future" # Use parallel backend
# )
#
# # Don't forget to reset
# plan(sequential)
## ----multiple_metrics---------------------------------------------------------
measure_multi <- function(model, test_data) {
scores <- project(model, test_data)
recon <- scores %*% t(model$v)
recon <- inverse_transform(model$preproc, recon)
residuals <- test_data - recon
ss_res <- sum(residuals^2)
ss_tot <- sum((test_data - mean(test_data))^2)
tibble::tibble(
rmse = sqrt(mean(residuals^2)),
mae = mean(abs(residuals)),
r2 = 1 - ss_res / ss_tot
)
}
cv_multi <- cv_generic(
X, folds,
.fit_fun = fit_pca,
.measure_fun = measure_multi,
fit_args = list(ncomp = 3)
)
all_metrics <- dplyr::bind_rows(cv_multi$metrics)
print(all_metrics)
cat("\nMean across folds:\n")
cat("RMSE:", round(mean(all_metrics$rmse), 4), "\n")
cat("MAE: ", round(mean(all_metrics$mae), 4), "\n")
cat("R2: ", round(mean(all_metrics$r2), 4), "\n")
## ----preprocessing_tip, eval=FALSE--------------------------------------------
# # WRONG: Preprocessing outside CV leaks information
# X_scaled <- scale(X) # Uses mean/sd from ALL samples including test!
# cv_wrong <- cv_generic(X_scaled, folds, ...)
#
# # RIGHT: Let the model handle preprocessing internally
# # Each fold fits centering/scaling on training data only
# fit_pca <- function(train_data, ncomp) {
# pca(train_data, ncomp = ncomp, preproc = center())
# }
## ----other_projectors, eval=FALSE---------------------------------------------
# # Nyström approximation for kernel PCA
# fit_nystrom <- function(train_data, ncomp) {
# nystrom_approx(train_data, ncomp = ncomp, nlandmarks = 50, preproc = center())
# }
#
# # Kernel-space reconstruction error
# measure_kernel <- function(model, test_data) {
# S <- project(model, test_data)
# K_hat <- S %*% t(S)
# Xc <- reprocess(model, test_data)
# K_true <- Xc %*% t(Xc)
# tibble::tibble(kernel_rmse = sqrt(mean((K_hat - K_true)^2)))
# }
#
# cv_nystrom <- cv_generic(
# X, folds,
# .fit_fun = fit_nystrom,
# .measure_fun = measure_kernel,
# fit_args = list(ncomp = 10)
# )
## ----nystrom_demo-------------------------------------------------------------
set.seed(123)
X <- matrix(rnorm(80 * 10), 80, 10)
ncomp <- 5
# Exact setting: linear kernel + centering + m = N
fit_std <- nystrom_approx(
X, ncomp = ncomp, landmarks = 1:nrow(X), preproc = center(), method = "standard"
)
# Compare kernel eigenvalues: eig(K) vs fit_std$sdev^2
Xc <- transform(fit_std$preproc, X)
K <- Xc %*% t(Xc)
lam_K <- eigen(K, symmetric = TRUE)$values[1:ncomp]
data.frame(
component = 1:ncomp,
nystrom = sort(fit_std$sdev^2, decreasing = TRUE),
exact_K = sort(lam_K, decreasing = TRUE)
)
# Relationship with PCA: prcomp() returns singular values / sqrt(n - 1)
p <- prcomp(Xc, center = FALSE, scale. = FALSE)
lam_from_pca <- p$sdev[1:ncomp]^2 * (nrow(X) - 1) # equals eig(K)
data.frame(
component = 1:ncomp,
from_pca = sort(lam_from_pca, decreasing = TRUE),
exact_K = sort(lam_K, decreasing = TRUE)
)
# Out-of-sample projection for new rows
new_rows <- 1:5
scores_new <- project(fit_std, X[new_rows, , drop = FALSE])
head(scores_new)
# Double Nyström collapses to standard when l = m = N
fit_dbl <- nystrom_approx(
X, ncomp = ncomp, landmarks = 1:nrow(X), preproc = center(), method = "double", l = nrow(X)
)
all.equal(sort(fit_std$sdev^2, decreasing = TRUE), sort(fit_dbl$sdev^2, decreasing = TRUE))
## ----nystrom_rbf, eval=FALSE--------------------------------------------------
# # Example RBF kernel
# gaussian_kernel <- function(A, B, sigma = 1) {
# # ||a-b||^2 = ||a||^2 + ||b||^2 - 2 a·b
# G <- A %*% t(B)
# a2 <- rowSums(A * A)
# b2 <- rowSums(B * B)
# D2 <- outer(a2, b2, "+") - 2 * G
# exp(-D2 / (2 * sigma^2))
# }
#
# fit_rbf <- nystrom_approx(
# X, ncomp = 8, nlandmarks = 40, preproc = center(), method = "double", l = 20,
# kernel_func = gaussian_kernel
# )
# scores_rbf <- project(fit_rbf, X[1:10, ])
## ----nystrom_cv_compare-------------------------------------------------------
set.seed(202)
# PCA fit function (reuses earlier fit_pca)
fit_pca <- function(train_data, ncomp) {
pca(train_data, ncomp = ncomp, preproc = center())
}
# Nyström fit function (standard variant, linear kernel, no RSpectra needed for small data)
fit_nystrom <- function(train_data, ncomp, nlandmarks = 50) {
nystrom_approx(train_data, ncomp = ncomp, nlandmarks = nlandmarks,
preproc = center(), method = "standard", use_RSpectra = FALSE)
}
# Kernel-space RMSE metric for a test fold
measure_kernel_rmse <- function(model, test_data) {
S <- project(model, test_data)
K_hat <- S %*% t(S)
Xc <- reprocess(model, test_data)
K_true <- Xc %*% t(Xc)
tibble::tibble(kernel_rmse = sqrt(mean((K_hat - K_true)^2)))
}
# Use a local copy of iris data and local folds for this comparison
X_cv <- as.matrix(scale(iris[, 1:4]))
K <- 5
fold_ids <- sample(rep(1:K, length.out = nrow(X_cv)))
folds_cv <- lapply(1:K, function(k) list(
train = which(fold_ids != k),
test = which(fold_ids == k)
))
# Compare for k = 3 components
k_sel <- 3
cv_pca_kernel <- cv_generic(
X_cv, folds_cv,
.fit_fun = fit_pca,
.measure_fun = measure_kernel_rmse,
fit_args = list(ncomp = k_sel)
)
cv_nys_kernel <- cv_generic(
X_cv, folds_cv,
.fit_fun = fit_nystrom,
.measure_fun = measure_kernel_rmse,
fit_args = list(ncomp = k_sel, nlandmarks = 50)
)
metrics_pca <- dplyr::bind_rows(cv_pca_kernel$metrics)
metrics_nys <- dplyr::bind_rows(cv_nys_kernel$metrics)
rmse_pca <- mean(metrics_pca$kernel_rmse, na.rm = TRUE)
rmse_nys <- mean(metrics_nys$kernel_rmse, na.rm = TRUE)
cv_summary <- data.frame(
method = c("PCA", "Nyström (linear)"),
kernel_rmse = c(rmse_pca, rmse_nys)
)
print(cv_summary)
# Simple bar plot
ggplot(cv_summary, aes(x = method, y = kernel_rmse, fill = method)) +
geom_col(width = 0.6) +
guides(fill = "none") +
labs(title = "Cross‑validated kernel RMSE (k = 3)", y = "Kernel RMSE", x = NULL)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.