Nothing
params <-
list(family = "red")
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 4.5)
library(multivarious)
library(ggplot2)
set.seed(1)
## ----simulate-----------------------------------------------------------------
n <- 80 # subjects
pX <- 8 # brain/features
pY <- 5 # behavior
d <- 2 # true latent dimensions
# orthonormal loadings
Vx_true <- qr.Q(qr(matrix(rnorm(pX * d), pX, d)))
Vy_true <- qr.Q(qr(matrix(rnorm(pY * d), pY, d)))
F_scores <- matrix(rnorm(n * d), n, d) # latent scores
noise <- 0.10
X <- F_scores %*% t(Vx_true) + noise * matrix(rnorm(n * pX), n, pX)
Y <- F_scores %*% t(Vy_true) + noise * matrix(rnorm(n * pY), n, pY)
## ----fit----------------------------------------------------------------------
fit_plsc <- plsc(X, Y, ncomp = 3, # request a few extra comps
preproc_x = standardize(), # correlation-scale
preproc_y = standardize())
fit_plsc$singvals
fit_plsc$explained_cov
## ----scores-plot, fig.align='center'------------------------------------------
scores_df <- data.frame(
LV1_x = scores(fit_plsc, "X")[, 1],
LV1_y = scores(fit_plsc, "Y")[, 1],
LV2_x = scores(fit_plsc, "X")[, 2],
LV2_y = scores(fit_plsc, "Y")[, 2]
)
ggplot(scores_df, aes(x = LV1_y, y = LV1_x)) +
geom_point(alpha = 0.7) +
geom_smooth(method = "lm", se = FALSE, color = "firebrick") +
labs(x = "Behavior scores (LV1)", y = "Brain scores (LV1)",
title = "Score association for LV1") +
theme_minimal()
## ----perm-test----------------------------------------------------------------
set.seed(123)
pt <- perm_test(fit_plsc, X, Y, nperm = 199, comps = 3, parallel = FALSE)
pt$component_results
cat("Sequential n_significant (alpha = 0.05):", pt$n_significant, "\n")
## ----bootstrap----------------------------------------------------------------
set.seed(321)
boot_plsc <- bootstrap(fit_plsc, nboot = 120, X = X, Y = Y, comps = 2, parallel = FALSE)
# X-loadings bootstrap ratios for LV1
df_bsr <- data.frame(
variable = paste0("x", seq_len(pX)),
bsr = boot_plsc$z_vx[, 1]
)
ggplot(df_bsr, aes(x = reorder(variable, bsr), y = bsr)) +
geom_hline(yintercept = c(-2, 2), linetype = "dashed", color = "grey50") +
geom_col(fill = "#1f78b4") +
coord_flip() +
labs(x = NULL, y = "Bootstrap ratio (X loadings, LV1)",
title = "Stable variables exceed |BSR| ≈ 2") +
theme_minimal()
## ----bootstrap-y, echo=FALSE--------------------------------------------------
df_bsr_y <- data.frame(
variable = paste0("y", seq_len(pY)),
bsr = boot_plsc$z_vy[, 1]
)
ggplot(df_bsr_y, aes(x = reorder(variable, bsr), y = bsr)) +
geom_hline(yintercept = c(-2, 2), linetype = "dashed", color = "grey50") +
geom_col(fill = "#33a02c") +
coord_flip() +
labs(x = NULL, y = "Bootstrap ratio (Y loadings, LV1)",
title = "Behavior variables driving LV1") +
theme_minimal()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.