Nothing
#' Fit a Cox regression model with elastic net regularization for a path of
#' lambda values
#'
#' Fit a Cox regression model via penalized maximum likelihood for a path of
#' lambda values. Can deal with (start, stop] data and strata, as well as
#' sparse design matrices.
#'
#' Sometimes the sequence is truncated before \code{nlambda} values of lambda
#' have been used. This happens when \code{cox.path} detects that the
#' decrease in deviance is marginal (i.e. we are near a saturated fit).
#'
#' @inheritParams multiview.path
#' @inheritParams multiview
#' @return An object of class "coxnet" and "glmnet".
#' \item{a0}{Intercept value, \code{NULL} for "cox" family.}
#' \item{beta}{A \code{nvars x length(lambda)} matrix of coefficients, stored in
#' sparse matrix format.}
#' \item{df}{The number of nonzero coefficients for each value of lambda.}
#' \item{dim}{Dimension of coefficient matrix.}
#' \item{lambda}{The actual sequence of lambda values used. When alpha=0, the
#' largest lambda reported does not quite give the zero coefficients reported
#' (lambda=inf would in principle). Instead, the largest lambda for alpha=0.001
#' is used, and the sequence of lambda values is derived from this.}
#' \item{dev.ratio}{The fraction of (null) deviance explained. The deviance
#' calculations incorporate weights if present in the model. The deviance is
#' defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood
#' for the saturated model (a model with a free parameter per observation).
#' Hence dev.ratio=1-dev/nulldev.}
#' \item{nulldev}{Null deviance (per observation). This is defined to be
#' 2*(loglike_sat -loglike(Null)). The null model refers to the 0 model.}
#' \item{npasses}{Total passes over the data summed over all lambda values.}
#' \item{jerr}{Error flag, for warnings and errors (largely for internal
#' debugging).}
#' \item{offset}{A logical variable indicating whether an offset was included
#' in the model.}
#' \item{call}{The call that produced this object.}
#' \item{nobs}{Number of observations.}
#'
#' @examples
#' set.seed(2)
#' nobs <- 100; nvars <- 15
#' xvec <- rnorm(nobs * nvars)
#' xvec[sample.int(nobs * nvars, size = 0.4 * nobs * nvars)] <- 0
#' x <- matrix(xvec, nrow = nobs)
#' beta <- rnorm(nvars / 3)
#' fx <- x[, seq(nvars / 3)] %*% beta / 3
#' ty <- rexp(nobs, exp(fx))
#' tcens <- rbinom(n = nobs, prob = 0.3, size = 1)
#' jsurv <- survival::Surv(ty, tcens)
#' fit1 <- glmnet:::cox.path(x, jsurv)
#'
#' # works with sparse x matrix
#' x_sparse <- Matrix::Matrix(x, sparse = TRUE)
#' fit2 <- glmnet:::cox.path(x_sparse, jsurv)
#'
#' # example with (start, stop] data
#' set.seed(2)
#' start_time <- runif(100, min = 0, max = 5)
#' stop_time <- start_time + runif(100, min = 0.1, max = 3)
#' status <- rbinom(n = nobs, prob = 0.3, size = 1)
#' jsurv_ss <- survival::Surv(start_time, stop_time, status)
#' fit3 <- glmnet:::cox.path(x, jsurv_ss)
#'
#' # example with strata
#' jsurv_ss2 <- glmnet::stratifySurv(jsurv_ss, rep(1:2, each = 50))
#' fit4 <- glmnet:::cox.path(x, jsurv_ss2)
#' @importFrom glmnet coxnet.deviance stratifySurv
multiview.cox.path <- function(x_list, x, y, rho = 0, weights = NULL, lambda = NULL, offset = NULL,
alpha = 1.0, nlambda = 100,
lambda.min.ratio = ifelse(nobs<nvars, 1e-2, 1e-4),
standardize = TRUE, intercept = TRUE,
thresh = 1e-7, exclude = integer(0), penalty.factor = rep(1.0, nvars),
lower.limits = -Inf, upper.limits = Inf, maxit = 100000,
trace.it = 0,
nvars, nobs, xm, xs, control, vp, vnames, is.offset) {
## ### Prepare all the generic arguments (mimicking top-level glmnet() call)
## if (alpha > 1) {
## warning("alpha > 1; set to 1")
## alpha = 1
## } else if (alpha < 0) {
## warning("alpha < 0; set to 0")
## alpha = 0
## }
## alpha = as.double(alpha)
## ## Make lambda the multiview lambda
## ## Allows use of mvlambda parameter for idempotence.
## lambda <- mvlambda
this.call <- match.call()
## np = dim(x)
## # if (is.null(np) || (np[2] <= 1)) stop("x should be a matrix with 2 or more columns")
## nobs = as.integer(np[1]); nvars = as.integer(np[2])
## # get feature variable names
## vnames <- colnames(x)
## # if(is.null(vnames)) vnames <- paste("V",seq(nvars),sep="")
## # check weights
## if(is.null(weights)) weights = rep(1,nobs)
## else if (length(weights) != nobs)
## stop(paste("Number of elements in weights (",length(weights),
## ") not equal to the number of rows of x (",nobs,")",sep=""))
## weights <- as.double(weights)
# check that response y is a Surv object of the correct length
y <- response.coxnet(y)
if (nrow(y) != nobs) stop(paste0("number of observations in y (" , nrow(y),
") not equal to the number of rows of x (",
nobs, ")"))
## # check offset option
## is.offset <- !(is.null(offset))
## if (is.offset == FALSE) {
## offset <- rep(0, times = nrow(y))
## }
## # check and standardize penalty factors (to sum to nvars)
## if(any(penalty.factor == Inf)) {
## exclude = c(exclude, seq(nvars)[penalty.factor == Inf])
## exclude = sort(unique(exclude))
## }
## ## Compute weighted mean and variance of columns of x, sensitive to sparse matrix
## ## needed to detect constant columns below, and later if standarization
## meansd <- weighted_mean_sd(x, weights)
## ## look for constant variables, and if any, then add to exclude
## const_vars <- meansd$sd == 0
## nzvar <- setdiff(which(!const_vars), exclude)
## # if all the non-excluded variables have zero variance, throw error
## if (length(nzvar) == 0) stop("All used predictors have zero variance")
## ## if any constant vars, add to exclude
## if(any(const_vars)) {
## exclude <- sort(unique(c(which(const_vars),exclude)))
## meansd$sd[const_vars] <- 1.0 ## we divide later, and do not want bad numbers
## }
## if(length(exclude) > 0) {
## jd = match(exclude, seq(nvars), 0)
## if(!all(jd > 0)) stop ("Some excluded variables out of range")
## penalty.factor[jd] = 1 # ow can change lambda sequence
## }
## # check and standardize penalty factors (to sum to nvars)
## vp = pmax(0, penalty.factor)
## if (max(vp) <= 0) stop("All penalty factors are <= 0")
## vp = as.double(vp * nvars / sum(vp))
## ### check on limits
## control <- multiview.control()
## if (thresh >= control$epsnr)
## warning("thresh should be smaller than glmnet.control()$epsnr",
## call. = FALSE)
## if(any(lower.limits > 0)){ stop("Lower limits should be non-positive") }
## if(any(upper.limits < 0)){ stop("Upper limits should be non-negative") }
## lower.limits[lower.limits == -Inf] = -control$big
## upper.limits[upper.limits == Inf] = control$big
## if (length(lower.limits) < nvars) {
## if(length(lower.limits) == 1) lower.limits = rep(lower.limits, nvars) else
## stop("Require length 1 or nvars lower.limits")
## } else lower.limits = lower.limits[seq(nvars)]
## if (length(upper.limits) < nvars) {
## if(length(upper.limits) == 1) upper.limits = rep(upper.limits, nvars) else
## stop("Require length 1 or nvars upper.limits")
## } else upper.limits = upper.limits[seq(nvars)]
## if (any(lower.limits == 0) || any(upper.limits == 0)) {
## ###Bounds of zero can mess with the lambda sequence and fdev;
## ###ie nothing happens and if fdev is not zero, the path can stop
## fdev <- multiview.control()$fdev
## if(fdev!= 0) {
## multiview.control(fdev = 0)
## on.exit(multiview.control(fdev = fdev))
## }
## }
## ### end check on limits
## ### end preparation of generic arguments
## # standardize x if necessary
## xm <- rep(0.0, times = nvars)
## if (standardize) {
## xs <- meansd$sd
## } else {
## xs <- rep(1.0, times = nvars)
## }
## if (!inherits(x, "sparseMatrix")) {
## x <- scale(x,FALSE,xs)
## } else {
## attr(x, "xm") <- xm
## attr(x, "xs") <- xs
## }
## lower.limits <- lower.limits * xs
## upper.limits <- upper.limits * xs
if (!("strata" %in% names(attributes(y))))
y <- glmnet::stratifySurv(y, rep(1.0, nobs))
# Pre-compute and cache some important information: ordering by stop time
# (ascending, deaths before censored), and for (start, stop] data: ordering
# by start time and some match information.
# Information is computed at the strata level
if (ncol(y) == 2) {
stop_o <- numeric(nobs)
for (i in unique(attr(y, "strata"))) {
ii <- which(attr(y, "strata") == i)
stop_o[ii] <- order(y[ii, "time"], y[ii, "status"],
decreasing = c(FALSE, TRUE))
}
attr(y, "stop_time") <- stop_o
} else {
stop_o <- numeric(nobs)
start_o <- numeric(nobs)
ss_match <- numeric(nobs)
for (i in unique(attr(y, "strata"))) {
ii <- which(attr(y, "strata") == i)
stop_o[ii] <- order(y[ii, "stop"], y[ii, "status"],
decreasing = c(FALSE, TRUE))
start_o[ii] <- order(y[ii, "start"], decreasing = c(FALSE))
ss_match[ii] <- match(start_o[ii], stop_o[ii])
}
attr(y, "stop_time") <- stop_o
attr(y, "start_time") <- start_o
attr(y, "ss_match") <- ss_match
}
# compute null deviance
# currently using std.weights = FALSE in order to match glmnet output
nulldev <- glmnet::coxnet.deviance(y = y, offset = offset, weights = weights,
std.weights = FALSE)
# compute lambda_max and lambda values
nlam = as.integer(nlambda)
user_lambda = FALSE # did user provide their own lambda values?
if (is.null(lambda)) {
if (lambda.min.ratio >= 1) stop("lambda.min.ratio should be less than 1")
lambda_max <- get_cox_lambda_max(x, y, alpha, weights, offset, exclude, vp)
ulam <- exp(seq(log(lambda_max), log(lambda_max * lambda.min.ratio),
length.out = nlam))
} else { # user provided lambda values
user_lambda = TRUE
if (any(lambda < 0)) stop("lambdas should be non-negative")
ulam <- as.double(rev(sort(lambda)))
nlam <- as.integer(length(lambda))
}
# start progress bar
if (trace.it == 1) pb <- utils::txtProgressBar(min = 0, max = nlam, style = 3)
glambda <- rep(1.0, nlam) # the actual glmnet lambda sequence, initially the scale factor
beta <- matrix(0, nrow = nvars, ncol = nlam)
dev.ratio <- rep(NA, length = nlam)
fit <- NULL
mnl <- min(nlam, control$mnlam)
cur_lambda <- ulam
cur_lambda[1] <- if(user_lambda) ulam[1] else control$big
for (k in 1:nlam) {
# get the correct lambda value to fit
## if (k > 1) {
## cur_lambda <- ulam[k]
## } else {
## cur_lambda <- ifelse(user_lambda, ulam[k], control$big)
## }
effective_lambda <- cur_lambda[k]
if (trace.it == 2) cat("Fitting lambda index", k, ":", ulam[k], fill = TRUE)
fit <- multiview.cox.fit(x_list = x_list,
x = x,
y = y,
rho = rho,
# weights / sum(weights),
weights = weights,
lambda = effective_lambda,
alpha = alpha,
offset = offset,
thresh = thresh,
maxit = maxit,
penalty.factor = vp,
exclude = exclude,
lower.limits = lower.limits,
upper.limits = upper.limits,
warm = fit,
from.cox.path = TRUE,
save.fit = TRUE,
trace.it = trace.it)
if (trace.it == 1) utils::setTxtProgressBar(pb, k)
# if error code non-zero, a non-fatal error must have occurred
# print warning, ignore this lambda value and return result
# for all previous lambda values
if (fit$jerr != 0) {
errmsg <- jerr.multiview(fit$jerr, maxit, k)
warning(errmsg$msg, call. = FALSE)
k <- k - 1
break
}
beta[, k] <- as.vector(fit$beta)
dev.ratio[k] <- fit$dev.ratio
glambda[k] <- fit$lambda_scale
# early stopping if dev.ratio almost 1 or no improvement
if (k >= mnl && user_lambda == FALSE) {
if (dev.ratio[k] > control$devmax * 0.99 / 0.999) break
if (k > 1 && dev.ratio[k] - dev.ratio[k - mnl + 1] <
control$fdev * 100 * dev.ratio[k]) break
}
}
if (trace.it == 1) {
utils::setTxtProgressBar(pb, nlam)
cat("", fill = TRUE)
}
# truncate beta, dev.ratio, lambda if necessary
if (k < nlam) {
indices <- 1:k
beta <- beta[, indices, drop = FALSE]
dev.ratio <- dev.ratio[indices]
ulam <- ulam[indices]
glambda <- glambda[indices]
}
## So far glambda has merely been the scaling factor. Now fix it
## to reflect what it actually should be.
glambda <- glambda * ulam
# return coefficients to original scale (because of x standardization)
beta <- beta / xs
# output
stepnames <- paste0("s", 0:(length(ulam) - 1))
out <- list(a0 = NULL)
out$beta <- Matrix::Matrix(beta, sparse = TRUE,
dimnames = list(vnames, stepnames))
out$df <- as.vector(colSums(abs(beta) > 0)) # as.vector to remove names
out$dim <- dim(beta)
## HERE IS A KEY SECTION OF CODE
## We always stick with the glmnet lambdas so as to concur with the case
## rho == 0. When rho == 0, we just call glmnet and the lambdas returned are
## the glmnet lambdas. They have the property of idempotence: call glmnet again with
## the returned lambda sequence returned and you get the same results.
## For rho > 0, this idempotence does not hold, which can be disconcerting!!
## This is because multiview.fit scales the lambda before calling glmnet:::elnet.
## So the lambda in the object should always be what glmnet routines were called with
## so as to use glmnet prediction methods etc. But we also store the unmodified lambdas
## as mvlambda, so that using mvlambda in the call will always guarantee idempotence
##
out$lambda <- glambda
out$mvlambda <- ulam
##
##
out$dev.ratio <- dev.ratio
out$nulldev <- nulldev
out$npasses <- fit$npasses
out$jerr <- fit$jerr
out$offset <- is.offset
out$call <- this.call
out$nobs <- nobs
class(out) <- c("coxnet", "glmnet")
out
}
#' Fit a Cox regression model with elastic net regularization for a single
#' value of lambda
#'
#' Fit a Cox regression model via penalized maximum likelihood for a single
#' value of lambda. Can deal with (start, stop] data and strata, as well as
#' sparse design matrices.
#'
#' WARNING: Users should not call \code{multiview.cox.fit} directly. Higher-level
#' functions in this package call \code{multiview.cox.fit} as a subroutine. If a
#' warm start object is provided, some of the other arguments in the function
#' may be overriden.
#'
#' \code{multiview.cox.fit} solves the elastic net problem for a single, user-specified
#' value of lambda. \code{multiview.cox.fit} works for Cox regression models, including
#' (start, stop] data and strata. It solves the problem using iteratively
#' reweighted least squares (IRLS). For each IRLS iteration, \code{multiview.cox.fit}
#' makes a quadratic (Newton) approximation of the log-likelihood, then calls
#' \code{elnet.fit} to minimize the resulting approximation.
#'
#' In terms of standardization: \code{multiview.cox.fit} does not standardize \code{x}
#' and \code{weights}. \code{penalty.factor} is standardized so that they sum
#' up to \code{nvars}.
#'
#' @inheritParams multiview.cox.path
#' @param lambda A single value for the \code{lambda} hyperparameter.
#' @param warm Either a \code{glmnetfit} object or a list (with names \code{beta}
#' and \code{a0} containing coefficients and intercept respectively) which can
#' be used as a warm start. Default is \code{NULL}, indicating no warm start.
#' For internal use only.
#' @param from.cox.path Was \code{multiview.cox.fit()} called from \code{multiview.path()}?
#' Default is FALSE.This has implications for computation of the penalty factors.
#' @param save.fit Return the warm start object? Default is FALSE.
#' @return An object with class "coxnet", "glmnetfit" and "glmnet". The list
#' returned contains more keys than that of a "glmnet" object.
#' \item{a0}{Intercept value, \code{NULL} for "cox" family.}
#' \item{beta}{A \code{nvars x 1} matrix of coefficients, stored in sparse matrix
#' format.}
#' \item{df}{The number of nonzero coefficients.}
#' \item{dim}{Dimension of coefficient matrix.}
#' \item{lambda}{Lambda value used.}
#' \item{dev.ratio}{The fraction of (null) deviance explained. The deviance
#' calculations incorporate weights if present in the model. The deviance is
#' defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood
#' for the saturated model (a model with a free parameter per observation).
#' Hence dev.ratio=1-dev/nulldev.}
#' \item{nulldev}{Null deviance (per observation). This is defined to be
#' 2*(loglike_sat -loglike(Null)). The null model refers to the 0 model.}
#' \item{npasses}{Total passes over the data.}
#' \item{jerr}{Error flag, for warnings and errors (largely for internal
#' debugging).}
#' \item{offset}{A logical variable indicating whether an offset was included
#' in the model.}
#' \item{call}{The call that produced this object.}
#' \item{nobs}{Number of observations.}
#' \item{warm_fit}{If \code{save.fit=TRUE}, output of C++ routine, used for
#' warm starts. For internal use only.}
#' \item{family}{Family used for the model, always "cox".}
#' \item{converged}{A logical variable: was the algorithm judged to have
#' converged?}
#' \item{boundary}{A logical variable: is the fitted value on the boundary of
#' the attainable values?}
#' \item{obj_function}{Objective function value at the solution.}
#' @importFrom glmnet coxgrad
multiview.cox.fit <- function(x_list, x, y, rho, weights, lambda, alpha = 1.0, offset = rep(0, nobs),
thresh = 1e-10, maxit = 100000,
penalty.factor = rep(1.0, nvars), exclude = c(),
lower.limits = -Inf, upper.limits = Inf, warm = NULL,
from.cox.path = FALSE, save.fit = FALSE, trace.it = 0) {
this.call <- match.call()
control <- multiview.control()
nviews <- length(x_list)
p_x <- lapply(x_list, ncol)
ends <- cumsum(p_x)
starts <- c(1, ends[-nviews] + 1)
beta_indices <- mapply(seq.int, starts, ends, SIMPLIFY = FALSE)
pairs <- apply(utils::combn(nviews, 2), 2, identity, simplify = FALSE)
view_components <- lapply(pairs,
function(pair) {
i <- pair[1L]; j <- pair[2L];
list(index = list(beta_indices[[i]], beta_indices[[j]]),
x = list(x_list[[i]], x_list[[j]]))
})
### Prepare all generic arguments
nobs <- nrow(x)
nvars <- ncol(x)
is.offset <- !(missing(offset))
if (is.offset == FALSE) {
offset <- as.double(rep(0, nobs))
}
# add xm and xs attributes if they are missing for sparse x
# glmnet.fit assumes that x is already standardized. Any standardization
# the user wants should be done beforehand.
if (inherits(x, "sparseMatrix")) {
if ("xm" %in% names(attributes(x)) == FALSE)
attr(x, "xm") <- rep(0.0, times = nvars)
if ("xs" %in% names(attributes(x)) == FALSE)
attr(x, "xs") <- rep(1.0, times = nvars)
}
# if calling from cox.path(), we do not need to check on exclude
# and penalty.factor arguments as they have been prepared by cox.path()
if (!from.cox.path) {
# check and standardize penalty factors (to sum to nvars)
if(any(penalty.factor == Inf)) {
exclude = c(exclude, seq(nvars)[penalty.factor == Inf])
exclude = sort(unique(exclude))
}
if(length(exclude) > 0) {
jd = match(exclude, seq(nvars), 0)
if(!all(jd > 0)) stop ("Some excluded variables out of range")
penalty.factor[jd] = 1 # ow can change lambda sequence
}
vp = pmax(0, penalty.factor)
vp = as.double(vp * nvars / sum(vp))
} else {
vp <- as.double(penalty.factor)
}
### check on limits
lower.limits[lower.limits == -Inf] = -control$big
upper.limits[upper.limits == Inf] = control$big
if (length(lower.limits) < nvars)
lower.limits = rep(lower.limits, nvars) else
lower.limits = lower.limits[seq(nvars)]
if (length(upper.limits) < nvars)
upper.limits = rep(upper.limits, nvars) else
upper.limits = upper.limits[seq(nvars)]
### end check on limits
### end preparation of generic arguments
# compute null deviance
if (is.null(warm)) {
nulldev <- glmnet::coxnet.deviance(y = y, offset = offset, weights = weights,
# std.weights = FALSE)
std.weights = TRUE)
fit <- NULL
coefold <- rep(0, nvars) # initial coefs = 0
eta <- offset
} else {
if ("glmnetfit" %in% class(warm)) {
if (!inherits(warm$warm_fit, "warmfit")) stop("Invalid warm start object")
fit <- warm
nulldev <- fit$nulldev
coefold <- fit$warm_fit$a # prev value for coefficients
eta <- get_eta(x, coefold, 0) + offset
} else if ("list" %in% class(warm) && "beta" %in% names(warm)) {
fit <- warm
nulldev <- glmnet::coxnet.deviance(y = y, offset = offset, weights = weights,
# std.weights = FALSE)
std.weights = TRUE)
coefold <- fit$beta # prev value for coefficients
eta <- get_eta(x, coefold, 0) + offset
fit$a0 <- 0 # needed for compatibility with elnet.fit()
} else {
stop("Invalid warm start object")
}
}
start <- NULL # current value for coefficients
obj_val_old <- cox_obj_function(y, eta, weights, lambda, alpha, coefold, vp, view_components, rho)
if (trace.it == 2) {
cat("Warm Start Objective:", obj_val_old, fill = TRUE)
}
conv <- FALSE # converged?
sum_weights <- sum(weights)
# IRLS loop
for (iter in 1L:control$mxitnr) {
xx <- x
# compute working response and weights
coxgrad_results <- sum_weights * glmnet::coxgrad(eta, y, weights,
# std.weights = FALSE,
std.weights = TRUE,
diag.hessian = TRUE)
w <- -attributes(coxgrad_results)$diag_hessian * sum_weights
zz <- (eta - offset) - ifelse(w != 0, -coxgrad_results / w, 0)
w_sum <- sum(w)
w_std <- w / sum(w)
mzz <- sum(w * zz) / w_sum
zzc <- zz - mzz
mx <- apply(xx, 2, function(x) sum(w_std * x))
if (!inherits(xx, "sparseMatrix")) {
xx <- sweep(xx, 2L, mx, check.margin = FALSE)
} else {
attr(xx, "xm") <- mx
attr(xx, "xs") <- rep(1.0, times = nvars)
}
nx_list <- lapply(x_list, function(mat) {
column_means <- apply(mat, 2, function(column) sum(w_std * column))
sweep(mat, 2L, column_means, check.margin = FALSE)
})
features <- xx
target <- zzc
rows <- lapply(pairs, make_row, x_list = nx_list, p_x = p_x, rho = rho )
features <- do.call(rbind, c(list(features), rows))
target <- c(target, rep(0, length(pairs) * nobs))
w <- c(w, rep(weights, length(pairs))) #NOTE!!
w_sum <- sum(w)
w_std <- w / w_sum
if (!is.null(fit)) {
## features and w_std below will have the right dimension from previous iteration!
g_offset <- c(offset, rep(offset, length(pairs)))
g_eta <- get_eta(features, fit$warm$a, 0) ## intercept is zero for larger fit!
fit$warm_fit$r <- w_std * (target - g_eta + g_offset)
}
# have to update the weighted residual in our fit object
# (in theory g and iy should be updated too, but we actually recompute g
# and iy anyway in wls.f)
## if (!is.null(fit)) {
## fit$warm_fit$r <- w * (z - eta + offset)
## }
#cat(sprintf("SW is %f\n", w_sum))
## NOTE: sum(weights) below takes care of glmnet parameterization lambda -> lambda * n!
#lambda2 <- lambda * sum_weights / w_sum
lambda2 <- lambda / w_sum
fit <- elnet.fit(x = features, y = target, weights = w_std,
lambda = lambda2, alpha = alpha,
exclude = exclude,
intercept = FALSE, from.glmnet.fit = TRUE, save.fit = TRUE,
thresh = thresh, maxit = maxit,
upper.limits = upper.limits, penalty.factor = vp, warm = fit
)
if (fit$jerr != 0) return(list(jerr = fit$jerr))
# do WLS with warmstart from previous iteration
## fit <- elnet.fit(x, z, w, lambda, alpha, intercept = FALSE,
## thresh = thresh, maxit = maxit, penalty.factor = vp,
## exclude = exclude, lower.limits = lower.limits,
## upper.limits = upper.limits, warm = fit,
## from.glmnet.fit = TRUE, save.fit = TRUE)
## if (fit$jerr != 0) return(list(jerr = fit$jerr))
# update coefficients, eta, mu and obj_val
start <- fit$warm_fit$a
eta <- get_eta(x, start, 0) + offset
obj_val <- cox_obj_function(y, eta, weights, lambda, alpha, start, vp, view_components, rho)
if (trace.it == 2) cat("Iteration", iter, "Objective:", obj_val, fill = TRUE)
boundary <- FALSE
halved <- FALSE # did we have to halve the step size?
# if objective function is not finite, keep halving the stepsize until it is finite
# for the halving step, we probably have to adjust fit$g as well?
if (!is.finite(obj_val) || obj_val > control$big) {
warning("Infinite objective function!", call. = FALSE)
if (is.null(coefold))
stop("no valid set of coefficients has been found: please supply starting values",
call. = FALSE)
warning("step size truncated due to divergence", call. = FALSE)
ii <- 1
while (!is.finite(obj_val) || obj_val > control$big) {
if (ii > control$mxitnr)
stop("inner loop 1; cannot correct step size", call. = FALSE)
ii <- ii + 1
start <- (start + coefold)/2
eta <- get_eta(x, start, 0) + offset
obj_val <- cox_obj_function(y, eta, weights, lambda, alpha, start, vp, view_components, rho)
if (trace.it == 2) cat("Iteration", iter, " Halved step 1, Objective:",
obj_val, fill = TRUE)
}
boundary <- TRUE
halved <- TRUE
}
# if we did any halving, we have to update the coefficients, intercept
# and weighted residual in the warm_fit object
if (halved) {
fit$warm_fit$a <- start
g_eta <- get_eta(features, start, 0) ## intercept is zero for larger fit!
fit$warm_fit$r <- w_std * (target - g_eta) + g_offset
}
# test for convergence
if (abs(obj_val - obj_val_old)/(0.1 + abs(obj_val)) < control$epsnr) {
conv <- TRUE
break
}
else {
coefold <- start
obj_val_old <- obj_val
}
}
# end of IRLS loop
## The scale below is used to determine the actual lambda seq for multiview
fit$lambda_scale <- sum_weights / w_sum
# checks on convergence and fitted values
if (!conv)
warning("multiview.cox.fit: algorithm did not converge", call. = FALSE)
# prepare output object
if (save.fit == FALSE) {
fit$warm_fit <- NULL
}
# overwrite values from elnet.fit object
fit$a0 <- list(NULL)
fit$call <- this.call
fit$offset <- is.offset
fit$nulldev <- nulldev
fit$dev.ratio <- 1 - glmnet::coxnet.deviance(y = y, pred = eta, weights = weights,
std.weights = FALSE) / nulldev
# add new key-value pairs to list
fit$family <- "cox"
fit$converged <- conv
fit$boundary <- boundary
fit$obj_function <- obj_val
class(fit) <- c("coxnet", "glmnetfit", "glmnet")
fit
}
#' Elastic net objective function value for Cox regression model
#'
#' Returns the elastic net objective function value for Cox regression model.
#'
#' @param y Survival response variable, must be a \code{Surv} or
#' \code{stratifySurv} object.
#' @param pred Model's predictions for \code{y}.
#' @param weights Observation weights.
#' @param lambda A single value for the \code{lambda} hyperparameter.
#' @param alpha The elasticnet mixing parameter, with \eqn{0 \le \alpha \le 1}.
#' @param coefficients The model's coefficients.
#' @param vp Penalty factors for each of the coefficients.
#' @param view_components a list of lists containing indices of coefficients and associated covariate (view) pairs
#' @param rho the fusion parameter
cox_obj_function <- function(y, pred, weights, lambda, alpha,
coefficients, vp, view_components, rho) {
coop_terms <- lapply(view_components, function(l) {
sum((l$x[[1L]] %*% coefficients[ l$index[[1L]] ] -
l$x[[2L]] %*% coefficients[ l$index[[2L]] ])^2)
})
glmnet::coxnet.deviance(y = y, pred = pred, weights = weights, std.weights = TRUE) +
# lambda * pen_function(coefficients, alpha, vp)
# inlining the definition to avoid a function call
lambda * sum(vp * (alpha * abs(coefficients) + (1-alpha)/2 * coefficients^2)) +
0.5 * rho * Reduce(f = '+', x = coop_terms)
}
#' Get lambda max for Cox regression model
#'
#' Return the lambda max value for Cox regression model, used for computing
#' initial lambda values. For internal use only.
#'
#' This function is called by \code{cox.path} for the value of lambda max.
#'
#' When \code{x} is not sparse, it is expected to already by centered and scaled.
#' When \code{x} is sparse, the function will get its attributes \code{xm} and
#' \code{xs} for its centering and scaling factors. The value of
#' \code{lambda_max} changes depending on whether \code{x} is centered and
#' scaled or not, so we need \code{xm} and \code{xs} to get the correct value.
#'
#' @param x Input matrix, of dimension \code{nobs x nvars}; each row is an
#' observation vector. If it is a sparse matrix, it is assumed to be unstandardized.
#' It should have attributes \code{xm} and \code{xs}, where \code{xm(j)} and
#' \code{xs(j)} are the centering and scaling factors for variable j respsectively.
#' If it is not a sparse matrix, it is assumed to be standardized.
#' @param y Survival response variable, must be a \code{Surv} or
#' \code{stratifySurv} object.
#' @param alpha The elasticnet mixing parameter, with \eqn{0 \le \alpha \le 1}.
#' @param weights Observation weights.
#' @param offset Offset for the model. Default is a zero vector of length
#' \code{nrow(y)}.
#' @param exclude Indices of variables to be excluded from the model.
#' @param vp Separate penalty factors can be applied to each coefficient.
get_cox_lambda_max <- function(x, y, alpha, weights = rep(1, nrow(x)),
offset = rep(0, nrow(x)), exclude = c(),
vp = rep(1, ncol(x))) {
nobs <- nrow(x); nvars <- ncol(x)
# extract strata (if any)
if ("strata" %in% names(attributes(y))) {
strata <- attr(y, "strata")
} else {
strata <- rep(1, nobs)
}
if (length(strata) != nobs) stop("length of strata != nobs")
# if some penalty factors are zero, we need to compute eta
vp_zero <- setdiff(which(vp == 0), exclude)
if (length(vp_zero) > 0) {
tempx <- x[, vp_zero, drop = FALSE]
if(inherits(tempx, "sparseMatrix")) {
attr(tempx, "xm") <- rep(0.0, length(vp_zero))
attr(tempx, "xs") <- attr(x,"xs")[vp_zero]
## coxph cannot handle sparse x. Strata not needed because y is expected to be stratified
fit <- multiview.cox.fit(x = tempx, y = y, offset = offset, weights = weights/sum(weights), lambda = 0)
fit$beta <- fit$beta/attr(tempx,"xs")# need to put beta on the correct scale for next line to work
eta <- as.numeric(predict(fit, newx = tempx, newoffset = offset, newstrata = strata))
} else {
eps <- glmnet.control()$epsnr
if (length(unique(strata)) == 1) {
fit <- survival::coxph(y ~ offset(offset) + tempx, weights = weights, eps = eps)
} else {
fit <- survival::coxph(y ~ offset(offset) + tempx + strata(strata),
weights = weights, eps = eps)
}
eta <- predict(fit, reference="sample") ## Coxph can do strata-specific centering
}
} else {
eta <- offset
}
eta <- eta - mean(eta) ## keep numbers small; partial likelihood independent of centering
ju <- rep(1, nvars)
ju[exclude] <- 0 # we have already included constant variables in exclude
# get cox gradient at "null" point
# note that coxgrad already includes weights, so no need to include them
# in subsequent computations
null_grad <- glmnet::coxgrad(eta, y, weights)
if (inherits(x, "sparseMatrix")) {
xm <- attr(x, "xm")
xs <- attr(x, "xs")
g <- abs((drop(t(null_grad) %*% x) - sum(null_grad) * xm) / xs)
} else {
g <- abs(drop(t(null_grad) %*% x))
}
g <- g / ifelse(vp > 0, vp, 1)
g[ju == 0] <- 0
lambda_max <- max(g) / max(alpha, 1e-3)
return(lambda_max)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.