Nothing
diststudent <- function(nu1, Sigma1, nu2, Sigma2, dist = c("renyi", "bhattacharyya", "hellinger"), bet = NULL, eps = 1e-06) {
#' Distance/Divergence between Centered Multivariate \eqn{t} Distributions
#'
#' Computes the distance or divergence (Renyi divergence, Bhattacharyya
#' distance or Hellinger distance) between two random vectors distributed
#' according to multivariate \eqn{t} distributions (MTD) with zero mean vector.
#'
#' @aliases diststudent
#'
#' @usage diststudent(nu1, Sigma1, nu2, Sigma2,
#' dist = c("renyi", "bhattacharyya", "hellinger"),
#' bet = NULL, eps = 1e-06)
#' @param nu1 numeric. The degrees of freedom of the first distribution.
#' @param Sigma1 symmetric, positive-definite matrix. The correlation matrix of the first distribution.
#' @param nu2 numeric. The degrees of freedom of the second distribution.
#' @param Sigma2 symmetric, positive-definite matrix. The correlation matrix of the second distribution.
#' @param dist character. The distance or divergence used.
#' One of \code{"renyi"} (default), \code{"battacharyya"} or \code{"hellinger"}.
#' @param bet numeric, positive and not equal to 1. Order of the Renyi divergence.
#' Ignored if \code{distance="bhattacharyya"} or \code{distance="hellinger"}.
#' @param eps numeric. Precision for the computation of the partial derivative of the Lauricella \eqn{D}-hypergeometric function (see Details). Default: 1e-06.
#' @return A numeric value: the divergence between the two distributions,
#' with two attributes \code{attr(, "epsilon")} (precision of the result of the Lauricella \eqn{D}-hypergeometric function,see Details)
#' and \code{attr(, "k")} (number of iterations).
#'
#' @details Given \eqn{X_1}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MTD
#' with parameters \eqn{(\nu_1, \mathbf{0}, \Sigma_1)}
#' and \eqn{X_2}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MTD
#' with parameters \eqn{(\nu_2, \mathbf{0}, \Sigma_2)}.
#'
#' Let \eqn{\delta_1 = \frac{\nu_1 + p}{2} \beta}, \eqn{\delta_2 = \frac{\nu_2 + p}{2} (1 - \beta)}
#' and \eqn{\lambda_1, \dots, \lambda_p} the eigenvalues of the square matrix \eqn{\Sigma_1 \Sigma_2^{-1}}
#' sorted in increasing order: \deqn{\lambda_1 < \dots < \lambda_{p-1} < \lambda_p}
#' The Renyi divergence between \eqn{X_1} and \eqn{X_2} is:
#' \deqn{
#' \begin{aligned}
#' D_R^\beta(\mathbf{X}_1||\mathbf{X}_1) & = & \displaystyle{\frac{1}{\beta - 1} \bigg[ \beta \ln\left(\frac{\Gamma\left(\frac{\nu_1+p}{2}\right) \Gamma\left(\frac{\nu_2}{2}\right) \nu_2^{\frac{p}{2}}}{\Gamma\left(\frac{\nu_2+p}{2}\right) \Gamma\left(\frac{\nu_1}{2}\right) \nu_1^{\frac{p}{2}}}\right) + \ln\left(\frac{\Gamma\left(\frac{\nu_2+p}{2}\right)}{\Gamma\left(\frac{\nu_2}{2}\right)}\right) + \ln\left(\frac{\Gamma\left(\delta_1 + \delta_2 - \frac{p}{2}\right)}{\Gamma(\delta_1 + \delta_2)}\right) } \\
#' && \displaystyle{- \frac{\beta}{2} \sum_{i=1}^p{\ln\lambda_i} + \ln F_D \bigg]}
#' \end{aligned}
#' }
#' with \eqn{F_D} given by:
#' \itemize{
#' \item If \eqn{\displaystyle{\frac{\nu_1}{\nu_2} \lambda_1 > 1}}:
#'
#' \eqn{
#' \displaystyle{ F_D = F_D^{(p)}{\bigg( \delta_1, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p; \delta_1+\delta_2; 1-\frac{\nu_2}{\nu_1 \lambda_1}, \dots, 1-\frac{\nu_2}{\nu_1 \lambda_p} \bigg)} }
#' }
#' \item If \eqn{\displaystyle{\frac{\nu_1}{\nu_2} \lambda_p < 1}}:
#'
#' \eqn{
#' \displaystyle{ F_D = \prod_{i=1}^p{\left(\frac{\nu_1}{\nu_2} \lambda_i\right)^{\frac{1}{2}}} F_D^{(p)}\bigg(\delta_2, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p; \delta_1+\delta_2; 1-\frac{\nu_1}{\nu_2}\lambda_1, \dots, 1-\frac{\nu_1}{\nu_2}\lambda_p\bigg) }
#' }
#' \item If \eqn{\displaystyle{\frac{\nu_1}{\nu_2} \lambda_1 < 1}} and \eqn{\displaystyle{\frac{\nu_1}{\nu_2} \lambda_p > 1}}:
#'
#' \eqn{
#' \displaystyle{ F_D = \left(\frac{\nu_2}{\nu_1} \frac{1}{\lambda_p}\right)^{\delta_2} \prod_{i=1}^p\left(\frac{\nu_1}{\nu_2}\lambda_i\right)^\frac{1}{2} F_D^{(p)}\bigg(\delta_2, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_p, \delta_1+\delta_2-\frac{p}{2}; \delta_1+\delta2; 1-\frac{\lambda_1}{\lambda_p}, \dots, 1-\frac{\lambda_{p-1}}{\lambda_p}, 1-\frac{\nu_2}{\nu_1}\frac{1}{\lambda_p}\bigg) }
#' }
#' }
#'
#' where \eqn{F_D^{(p)}} is the Lauricella \eqn{D}-hypergeometric function defined for \eqn{p} variables:
#' \deqn{ \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } } }
#' Its computation uses the \code{\link{lauricella}} function.
#'
#' The Bhattacharyya distance is given by:
#' \deqn{D_B(\mathbf{X}_1||\mathbf{X}_2) = \frac{1}{2} D_R^{1/2}(\mathbf{X}_1||\mathbf{X}_2)}
#'
#' And the Hellinger distance is given by:
#' \deqn{D_H(\mathbf{X}_1||\mathbf{X}_2) = 1 - \exp{\left(-\frac{1}{2} D_R^{1/2}(\mathbf{X}_1||\mathbf{X}_2)\right)}}
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions, IEEE Signal Processing Letters.
#' \doi{10.1109/LSP.2023.3324594}
#'
#' @examples
#' nu1 <- 2
#' Sigma1 <- matrix(c(2, 1.2, 0.4, 1.2, 2, 0.6, 0.4, 0.6, 2), nrow = 3)
#' nu2 <- 4
#' Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)
#'
#' # Renyi divergence
#' diststudent(nu1, Sigma1, nu2, Sigma2, bet = 0.25)
#' diststudent(nu2, Sigma2, nu1, Sigma1, bet = 0.25)
#'
#' # Bhattacharyya distance
#' diststudent(nu1, Sigma1, nu2, Sigma2, dist = "bhattacharyya")
#' diststudent(nu2, Sigma2, nu1, Sigma1, dist = "bhattacharyya")
#'
#' # Hellinger distance
#' diststudent(nu1, Sigma1, nu2, Sigma2, dist = "hellinger")
#' diststudent(nu2, Sigma2, nu1, Sigma1, dist = "hellinger")
#'
#' @export
# Distances/divergences available: "renyi", "bhattacharyya" or "hellinger"
dist <- match.arg(dist)
switch(dist,
renyi = {
if (is.null(bet))
stop("The bet argument must be provided for the Renyi distance.")
# We must have: bet>1 and bet!=1
if (bet <= 0 | bet == 1)
stop("bet must be positive, different to 1.")
},
bhattacharyya = {
if (!is.null(bet))
message("bet is omitted when `dist='bhattacharyya'.")
bet <- 0.5
},
hellinger = {
if (!is.null(bet))
message("bet is omitted when `dist='bhattacharyya'.")
bet <- 0.5
}
)
# Sigma1 and Sigma2 must be matrices
if (is.numeric(Sigma1) & !is.matrix(Sigma1))
Sigma1 <- matrix(Sigma1)
if (is.numeric(Sigma2) & !is.matrix(Sigma2))
Sigma2 <- matrix(Sigma2)
# Number of variables
p <- nrow(Sigma1)
# Sigma1 and Sigma2 must be square matrices with the same size
if (ncol(Sigma1) != p | nrow(Sigma2) != p | ncol(Sigma2) != p)
stop("Sigma1 et Sigma2 must be square matrices with rank p.")
# IS Sigma1 symmetric, positive-definite?
if (!isSymmetric(Sigma1))
stop("Sigma1 must be a symmetric, positive-definite matrix.")
lambda1 <- eigen(Sigma1, only.values = TRUE)$values
if (any(lambda1 < .Machine$double.eps))
stop("Sigma1 must be a symmetric, positive-definite matrix.")
# Is Sigma2 symmetric, positive-definite?
if (!isSymmetric(Sigma2))
stop("Sigma2 must be a symmetric, positive-definite matrix.")
lambda2 <- eigen(Sigma2, only.values = TRUE)$values
if (any(lambda2 < .Machine$double.eps))
stop("Sigma2 must be a symmetric, positive-definite matrix.")
# Eigenvalues of Sigma1 %*% inv(Sigma2)
lambda <- sort(eigen(Sigma1 %*% solve(Sigma2), only.values = TRUE)$values, decreasing = FALSE)
loglambda <- log(lambda)
nulambda <- lambda*nu1/nu2
delta1 <- bet*(nu1 + p)/2; delta2 <- (1 - bet)*(nu2 + p)/2
if (nulambda[1] > 1) {
lauric <- lauricella(delta1, rep(0.5, p), delta1 + delta2, 1 - 1/nulambda, eps = eps)
} else if (nulambda[p] < 1) {
lauric <- lauricella(delta2, rep(0.5, p), delta1 + delta2, 1 - nulambda, eps = eps)
lauric <- prod(sqrt(nulambda)) * lauric
} else {
lauric <- lauricella(delta2, c(rep(0.5, p-1), delta1 + delta2 - p/2),
delta1 + delta2,
c(1 - lambda[1:(p-1)]/lambda[p], 1 - 1/nulambda[p]),
eps = eps)
lauric <- (nulambda[p])^(-delta2) * prod(sqrt(nulambda)) * lauric
}
gamma1p <- gamma((nu1 + p)/2); gamma2p <- gamma((nu2 + p)/2)
gamma1 <- gamma(nu1/2); gamma2 <- gamma(nu2/2)
renyi <- (
bet*log((gamma1p*gamma2*nu2^(p/2))/(gamma2p*gamma1*nu1^(p/2))) +
log(gamma2p/gamma2) + log(gamma(delta1 + delta2 - p/2)/gamma(delta1 + delta2)) -
bet/2 * sum(loglambda) + log(lauric)
)/(bet - 1)
switch(dist,
renyi =
return(renyi),
bhattacharyya =
return(renyi/2),
hellinger =
return(1 - exp(-renyi/2))
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.