Description Usage Format Source Examples
This is a nationally representative, longitudinal study of more than 21,000 9th graders in 944 schools who will be followed through their secondary and postsecondary years. The data are used for testing whether sex, socioeconomic status and sex by socio-economic status interaction are predictive of the mathematics standardized score in each of the eight race groups.
1 |
A data frame with 8 observations on the following 10 variables:
race
: race group.
b1, b2, b3
: estimated regression coefficients for sex, socio-economic status and sex by socio-economic status interaction, respectively, on the mathematics standardized score.
V11, V22, V33
: variances of the estimated coefficients.
V12, V13, V23
: covariances of the estimated coefficients.
Chen H, Manning AK, Dupuis J (2012). A method of moments estimator for random effect multivariate meta-analysis. Biometrics. 68(4):1278-1284.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
This is mvmeta 0.4.11. For an overview type: help('mvmeta-package').
race b1 b2 b3 V11 V12 V13 V22 V23 V33
1 1 0.3161 7.4015 0.4278 2.3568 -1.2105 0.8524 9.7029 -6.1753 4.4114
2 2 -0.3201 6.9426 -0.9816 0.2529 0.1498 -0.1019 0.7016 -0.4167 0.2743
3 3 0.6983 4.6680 -0.2415 0.1444 -0.0652 0.0433 0.6481 -0.3899 0.2608
4 4 3.2736 4.3080 0.2052 3.8428 -4.5587 3.2892 10.3517 -6.6684 4.8268
5 5 -0.1599 5.6398 -0.6782 0.1161 -0.0992 0.0645 0.4363 -0.2610 0.1733
6 6 -0.6989 6.3158 -0.7918 0.1603 0.0242 -0.0129 0.7697 -0.4686 0.3180
7 7 -3.6094 9.3429 -2.8711 3.2054 -1.1984 0.8437 17.8889 -10.7697 7.2101
8 8 0.2172 6.4078 -0.6093 0.0278 0.0136 -0.0091 0.1184 -0.0716 0.0482
Call: mvmeta(formula = cbind(b1, b2, b3) ~ 1, S = S, data = hsls, method = "fixed")
Multivariate fixed-effects meta-analysis
Dimension: 3
Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
b1 0.0799 0.1208 0.6615 0.5083 -0.1568 0.3166
b2 6.2031 0.2448 25.3398 0.0000 5.7234 6.6829 ***
b3 -0.6591 0.1550 -4.2527 0.0000 -0.9629 -0.3554 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multivariate Cochran Q-test for heterogeneity:
Q = 54.6278 (df = 21), p-value = 0.0001
I-square statistic = 61.6%
8 studies, 24 observations, 3 fixed and 0 random-effects parameters
logLik AIC BIC
-35.7329 77.4659 81.0000
Call: mvmeta(formula = cbind(b1, b2, b3) ~ 1, S = S, data = hsls, method = "mm")
Multivariate random-effects meta-analysis
Dimension: 3
Estimation method: Method of moments
Fixed-effects coefficients
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
b1 -0.0604 0.2684 -0.2250 0.8220 -0.5864 0.4656
b2 6.1821 0.2887 21.4109 0.0000 5.6162 6.7480 ***
b3 -0.7009 0.1894 -3.6996 0.0002 -1.0722 -0.3296 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Between-study random-effects (co)variance components
Structure: General positive-definite
Std. Dev Corr
b1 0.5296 b1 b2
b2 0.3201 -0.55870
b3 0.2308 0.02538 0.81492
(Note: Truncated estimate - 1 negative eigenvalues set to 0)
Multivariate Cochran Q-test for heterogeneity:
Q = 54.6278 (df = 21), p-value = 0.0001
I-square statistic = 61.6%
8 studies, 24 observations, 3 fixed and 1 random-effects parameters
b1 b2 b3
b1 0.280483923 -0.09472445 0.003102559
b2 -0.094724450 0.10248384 0.060208554
b3 0.003102559 0.06020855 0.053263783
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.