berkey98: Five Published Trials on Periodontal Disease

Description Usage Format Source Examples

Description

The dataset contains the results of 5 published trials comparing surgical and non-surgical treatments for medium-severity periodontal disease, one year after treatment. The 2 estimated outcomes are average improvements (surgical minus non-surgical, in mm) in probing depth (PD) and attachment level (AL).

Usage

1

Format

A data frame with 5 observations on the following 7 variables:

pubyear

publication year of the trial.

npat

number of patients included in the trial.

PD

estimated improvement of surgical versus non-surgical treatments in probing depth (mm).

AL

estimated improvement of surgical versus non-surgical treatments in attachment level (mm).

var_PD

variance of the estimated outcome for PD.

cov_PD_AL

covariance of the estimated outcomes for PD and AL.

var_AL

variance of the estimated outcome for AL.

Row names specify the author of the paper reporting the results of each trial.

Source

Berkey CS, Hoaglin DC, et al. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine. 17:2537–2550.

Berkey C. S., Antczak-Bouckoms A., et al. (1995). Multiple-outcomes meta-analysis of treatments for periodontal disease. Journal of Dental Research. 74(4):1030–1039.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available here].

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
### REPRODUCE THE RESULTS IN BERKEY ET AL. (1998)

# INSPECT THE DATA
berkey98

# FIXED-EFFECTS
year <- berkey98$pubyear - 1983
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="fixed")
print(summary(model),digits=3)

# GLS MODEL (VARIANCE COMPONENTS) 
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="vc",
  control=list(vc.adj=FALSE))
print(summary(model),digits=3)
round(model$Psi,3)

# ML MODEL
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="ml")
print(summary(model),digits=3)
round(model$Psi,3)

Example output

This is mvmeta 0.4.11. For an overview type: help('mvmeta-package').
          pubyear npat   PD    AL var_PD cov_PD_AL var_AL
Pihlstrom    1983   14 0.47 -0.32 0.0075    0.0030 0.0077
Lindhe       1982   15 0.20 -0.60 0.0057    0.0009 0.0008
Knowles      1979   78 0.40 -0.12 0.0021    0.0007 0.0014
Ramfjord     1987   89 0.26 -0.31 0.0029    0.0009 0.0015
Becker       1988   16 0.56 -0.39 0.0148    0.0072 0.0304
Call:  mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98, 
    method = "fixed")

Multivariate fixed-effects meta-regression
Dimension: 2

Fixed-effects coefficients
PD : 
             Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)     0.305       0.029  10.627     0.000     0.249     0.361  ***
year           -0.005       0.008  -0.605     0.545    -0.021     0.011     
AL : 
             Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)    -0.399       0.019  -21.133     0.000    -0.436    -0.362  ***
year           -0.010       0.006   -1.571     0.116    -0.023     0.003     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%

5 studies, 10 observations, 4 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
-44.206   96.412   97.623  

Call:  mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98, 
    method = "vc", control = list(vc.adj = FALSE))

Multivariate random-effects meta-regression
Dimension: 2
Estimation method: Variance components

Fixed-effects coefficients
PD : 
             Estimate  Std. Error      z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)     0.359       0.075  4.782     0.000     0.212     0.507  ***
year            0.005       0.022  0.240     0.811    -0.038     0.049     
AL : 
             Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)    -0.336       0.083  -4.040     0.000    -0.499    -0.173  ***
year           -0.011       0.026  -0.445     0.656    -0.062     0.039     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Between-study random-effects (co)variance components
Structure: General positive-definite
    Std. Dev   Corr
PD     0.147     PD
AL     0.169  0.525

Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%

5 studies, 10 observations, 4 fixed and 1 random-effects parameters

      PD    AL
PD 0.022 0.013
AL 0.013 0.028
Call:  mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98, 
    method = "ml")

Multivariate random-effects meta-regression
Dimension: 2
Estimation method: ML

Fixed-effects coefficients
PD : 
             Estimate  Std. Error      z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)     0.348       0.052  6.694     0.000     0.246     0.450  ***
year            0.001       0.015  0.063     0.950    -0.029     0.031     
AL : 
             Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub     
(Intercept)    -0.335       0.079  -4.261     0.000    -0.489    -0.181  ***
year           -0.011       0.024  -0.445     0.656    -0.059     0.037     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Between-study random-effects (co)variance components
Structure: General positive-definite
    Std. Dev   Corr
PD     0.090     PD
AL     0.158  0.659

Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%

5 studies, 10 observations, 4 fixed and 3 random-effects parameters
logLik     AIC     BIC  
 6.004   1.991   4.110  

      PD    AL
PD 0.008 0.009
AL 0.009 0.025

mvmeta documentation built on Dec. 10, 2019, 5:07 p.m.