Description Usage Format Source Examples
The dataset contains the results of 5 published trials comparing surgical and non-surgical treatments for medium-severity periodontal disease, one year after treatment. The 2 estimated outcomes are average improvements (surgical minus non-surgical, in mm) in probing depth (PD) and attachment level (AL).
1 |
A data frame with 5 observations on the following 7 variables:
pubyear
publication year of the trial.
npat
number of patients included in the trial.
PD
estimated improvement of surgical versus non-surgical treatments in probing depth (mm).
AL
estimated improvement of surgical versus non-surgical treatments in attachment level (mm).
var_PD
variance of the estimated outcome for PD
.
cov_PD_AL
covariance of the estimated outcomes for PD
and AL
.
var_AL
variance of the estimated outcome for AL
.
Row names specify the author of the paper reporting the results of each trial.
Berkey CS, Hoaglin DC, et al. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine. 17:2537–2550.
Berkey C. S., Antczak-Bouckoms A., et al. (1995). Multiple-outcomes meta-analysis of treatments for periodontal disease. Journal of Dental Research. 74(4):1030–1039.
Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available here].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ### REPRODUCE THE RESULTS IN BERKEY ET AL. (1998)
# INSPECT THE DATA
berkey98
# FIXED-EFFECTS
year <- berkey98$pubyear - 1983
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="fixed")
print(summary(model),digits=3)
# GLS MODEL (VARIANCE COMPONENTS)
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="vc",
control=list(vc.adj=FALSE))
print(summary(model),digits=3)
round(model$Psi,3)
# ML MODEL
model <- mvmeta(cbind(PD,AL)~year,S=berkey98[5:7],data=berkey98,method="ml")
print(summary(model),digits=3)
round(model$Psi,3)
|
This is mvmeta 0.4.11. For an overview type: help('mvmeta-package').
pubyear npat PD AL var_PD cov_PD_AL var_AL
Pihlstrom 1983 14 0.47 -0.32 0.0075 0.0030 0.0077
Lindhe 1982 15 0.20 -0.60 0.0057 0.0009 0.0008
Knowles 1979 78 0.40 -0.12 0.0021 0.0007 0.0014
Ramfjord 1987 89 0.26 -0.31 0.0029 0.0009 0.0015
Becker 1988 16 0.56 -0.39 0.0148 0.0072 0.0304
Call: mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98,
method = "fixed")
Multivariate fixed-effects meta-regression
Dimension: 2
Fixed-effects coefficients
PD :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) 0.305 0.029 10.627 0.000 0.249 0.361 ***
year -0.005 0.008 -0.605 0.545 -0.021 0.011
AL :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) -0.399 0.019 -21.133 0.000 -0.436 -0.362 ***
year -0.010 0.006 -1.571 0.116 -0.023 0.003
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%
5 studies, 10 observations, 4 fixed and 0 random-effects parameters
logLik AIC BIC
-44.206 96.412 97.623
Call: mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98,
method = "vc", control = list(vc.adj = FALSE))
Multivariate random-effects meta-regression
Dimension: 2
Estimation method: Variance components
Fixed-effects coefficients
PD :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) 0.359 0.075 4.782 0.000 0.212 0.507 ***
year 0.005 0.022 0.240 0.811 -0.038 0.049
AL :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) -0.336 0.083 -4.040 0.000 -0.499 -0.173 ***
year -0.011 0.026 -0.445 0.656 -0.062 0.039
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Between-study random-effects (co)variance components
Structure: General positive-definite
Std. Dev Corr
PD 0.147 PD
AL 0.169 0.525
Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%
5 studies, 10 observations, 4 fixed and 1 random-effects parameters
PD AL
PD 0.022 0.013
AL 0.013 0.028
Call: mvmeta(formula = cbind(PD, AL) ~ year, S = berkey98[5:7], data = berkey98,
method = "ml")
Multivariate random-effects meta-regression
Dimension: 2
Estimation method: ML
Fixed-effects coefficients
PD :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) 0.348 0.052 6.694 0.000 0.246 0.450 ***
year 0.001 0.015 0.063 0.950 -0.029 0.031
AL :
Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
(Intercept) -0.335 0.079 -4.261 0.000 -0.489 -0.181 ***
year -0.011 0.024 -0.445 0.656 -0.059 0.037
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Between-study random-effects (co)variance components
Structure: General positive-definite
Std. Dev Corr
PD 0.090 PD
AL 0.158 0.659
Multivariate Cochran Q-test for residual heterogeneity:
Q = 125.756 (df = 6), p-value = 0.000
I-square statistic = 95.2%
5 studies, 10 observations, 4 fixed and 3 random-effects parameters
logLik AIC BIC
6.004 1.991 4.110
PD AL
PD 0.008 0.009
AL 0.009 0.025
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.