smoking: Meta-Analysis of Interventions to Promote Smoking Cessation

Description Usage Format Details Note Source Examples

Description

The dataset contains the results of 24 trials comparing four alternative interventions to promote smoking cessation. The trials have different designs, comparing two or three different interventions. The data consist of the number of successes out of the total participants, and the estimated log-odds ratio for arms B, C, and D relative to arm A, as well as the (co)variance matrix of these three estimates.

Usage

1

Format

A data frame with 24 observations on the following 19 variables:

Details

Intervention A is chosen as the reference category. Trials without an arm A (trials 2 and 21-24) are augmented with an arm A with 0.01 individuals and 0.001 successes. Trials containing zero cells (trials 9 and 20) have 1 individual with 0.5 successes added to each intervention. Details on the data augmentation and estimation of (co)variances of the log-odds ratios are provided by White (2011).

Note

The data provide an example of application of network meta-analysis, also referred to as indirect mixed-treatment comparison. Additional information using examples based on these data are provided by Lu and Ades (2006), White (2011) and Higgins and colleagues (2012).

Source

Lu G, Ades AE (2006). Assessing evidence inconsistency in mixed treatment comparisons. Journal of the American Statistical Association. 101:447–459.

Higgins JPT, Jackson D, Barrett JK et al (2012). Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Research Synthesis Methods. 3(2):98–110.

White IR (2011). Multivariate random-effects meta-regression. The Stata Journal. 11:255–270.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
### REPRODUCE THE RESULTS IN WHITE (2011)

# INSPECT THE DATA
head(smoking)
names(smoking)

# UNSTRUCTURED BETWEEN-STUDY (CO)VARIANCE
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
model <- mvmeta(y,S)
summary(model)

# STRUCTURED BETWEEN-STUDY (CO)VARIANCE (PROPORTIONAL)
model <- mvmeta(y,S,bscov="prop",control=list(Psifix=diag(3)+1))
summary(model)

# SEE help(mvmetaCovStruct) for additional info and examples

Example output

This is mvmeta 0.4.7. For an overview type: help('mvmeta-package').
  study design     dA     nA dB  nB  dC  nC dD  nD          yB        yC
1     1    acd  9.000 140.00 NA  NA  23 140 10 138          NA 1.0512930
2     2    bcd  0.001   0.01 11  78  12  85 29 170  0.39042714 0.3916717
3     3     ab 79.000 702.00 77 694  NA  NA NA  NA -0.01596494        NA
4     4     ab 18.000 671.00 21 535  NA  NA NA  NA  0.39350453        NA
5     5     ab  8.000 116.00 19 146  NA  NA NA  NA  0.70294160        NA
6     6     ac 75.000 731.00 NA  NA 363 714 NA  NA          NA 2.2022893
         yD          SBB      SBC      SBD          SCC          SCD
1 0.1285276           NA       NA       NA 1.707700e-01    0.1187447
2 0.6157604 1.111217e+03 1111.111 1111.111 1.111208e+03 1111.1110840
3        NA 2.887112e-02       NA       NA           NA           NA
4        NA 1.066515e-01       NA       NA           NA           NA
5        NA 1.947649e-01       NA       NA           NA           NA
6        NA           NA       NA       NA 2.046155e-02           NA
           SDD
1    0.2265572
2 1111.1525879
3           NA
4           NA
5           NA
6           NA
 [1] "study"  "design" "dA"     "nA"     "dB"     "nB"     "dC"     "nC"    
 [9] "dD"     "nD"     "yB"     "yC"     "yD"     "SBB"    "SBC"    "SBD"   
[17] "SCC"    "SCD"    "SDD"   
Call:  mvmeta(formula = y ~ 1, S = S)

Multivariate random-effects meta-analysis
Dimension: 3
Estimation method: REML

Fixed-effects coefficients
    Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub     
yB    0.3326      0.2162  1.5383    0.1240   -0.0912    0.7564     
yC    0.6810      0.2025  3.3623    0.0008    0.2840    1.0780  ***
yD    0.8357      0.3414  2.4479    0.0144    0.1666    1.5049    *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Between-study random-effects (co)variance components
	Structure: General positive-definite
    Std. Dev    Corr        
yB    0.3141      yB      yC
yC    0.7498  0.9362        
yD    0.7225  0.8559  0.6196

Multivariate Cochran Q-test for heterogeneity:
Q = 204.2165 (df = 28), p-value = 0.0000
I-square statistic = 86.3%

24 studies, 31 observations, 3 fixed and 6 random-effects parameters
  logLik       AIC       BIC  
-53.8269  125.6539  137.6437  

Call:  mvmeta(formula = y ~ 1, S = S, bscov = "prop", control = list(Psifix = diag(3) + 
    1))

Multivariate random-effects meta-analysis
Dimension: 3
Estimation method: REML

Fixed-effects coefficients
    Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub     
yB    0.3985      0.3299  1.2078    0.2271   -0.2482    1.0451     
yC    0.7024      0.1960  3.5826    0.0003    0.3181    1.0866  ***
yD    0.8659      0.3733  2.3193    0.0204    0.1342    1.5976    *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Between-study random-effects (co)variance components
	Structure: Proportional to fixed matrix
    Std. Dev  Corr     
yB    0.6744    yB   yC
yC    0.6744   0.5     
yD    0.6744   0.5  0.5

Multivariate Cochran Q-test for heterogeneity:
Q = 204.2165 (df = 28), p-value = 0.0000
I-square statistic = 86.3%

24 studies, 31 observations, 3 fixed and 1 random-effects parameters
  logLik       AIC       BIC  
-54.9462  117.8924  123.2212  

mvmeta documentation built on Dec. 10, 2019, 5:07 p.m.