Nothing
#' @importFrom magrittr %>%
#' @export
magrittr::`%>%`
#' @importFrom rlang is_na
#' @export
rlang::is_na
#' @importFrom rlang are_na
#' @export
rlang::are_na
#' Group By Helper
#'
#' This is a wrapper to facilitate the `grouped_df` S3 method.
#'
#' @param data data.frame, which will be grouped
#' @param .fun a function to apply
#' @param ... additional arguments to be passed to map
#'
#' @return a dataframe with the function applied to each group
#' @keywords internal
#' @noRd
#' @examples
#' \dontrun{
#' miss_case_table.grouped_df <- function(data) {
#' group_by_fun(data, .fun = miss_case_table)
#' }
#' airquality %>%
#' group_by(Month) %>%
#' miss_case_table()
#' }
#'
group_by_fun <- function(data, .fun, ...) {
tidyr::nest(data) %>%
dplyr::mutate(data = purrr::map(data, .fun, ...)) %>%
tidyr::unnest(cols = c(data))
}
#' Test if the input is NULL
#'
#' @param x object
#'
#' @return an error if input (x) is NULL
#'
#' @examples
#' \dontrun{
#' # success
#' test_if_null(airquality)
#' # fail
#' my_test <- NULL
#' test_if_null(my_test)
#' }
#' @keywords internal
#' @noRd
test_if_null <- function(x,
call = rlang::caller_env()) {
# test for null
if (is.null(x)) {
cli::cli_abort(
message = c(
"Input must not be NULL",
"Input is {.cls {class(x)}}"
),
call = call
)
}
}
#' Test if the input is Missing
#'
#' @param x object
#'
#' @return an error if input (x) is not specified
#'
#' @examples
#' \dontrun{
#' # success
#' my_test <- x
#' test_if_null(my_test)
#' # fail
#' test_if_missing()
#' }
#' @keywords internal
#' @noRd
test_if_missing <- function(x, msg = NULL) {
# test for null
if (missing(x)) {
cli::cli_abort(
c(
"argument must be specified",
"{msg}"
)
)
}
}
#' @keywords internal
#' @noRd
test_if_dots_missing <- function(dots_empty,
msg = NULL,
call = rlang::caller_env()) {
# test for null
if (dots_empty) {
cli::cli_abort(
c(
"argument must be specified",
"{msg}"
),
call = call
)
}
}
#' Test if input is a data.frame
#'
#' @param x object
#'
#' @return an error if input (x) is a data.frame
#'
#' @examples
#' \dontrun{
#' # success
#' test_if_dataframe(airquality)
#' # fail
#' my_test <- matrix(10)
#' test_if_dataframe(my_test)
#' }
#'
#' @keywords internal
#' @noRd
test_if_dataframe <- function(x,
arg = rlang::caller_arg(x),
call = rlang::caller_env()) {
# test for dataframe
if (!inherits(x, "data.frame")) {
cli::cli_abort(
message = c(
"Input must inherit from {.cls data.frame}",
"We see class: {.cls {class(x)}}"
),
call = call
)
}
}
test_if_any_shade <- function(x,
call = rlang::caller_env()) {
# test for dataframe
test_if_dataframe(x)
if (!any_shade(x)) {
cli::cli_abort(
message = c(
"Input must contain a shade column.",
"See {.code ?shade}, {.code ?shade}, and {.code ?bind_shadow}"
),
call = call
)
}
}
#' Helper function to determine whether there are any missings
#'
#' @param x a vector
#'
#' @return logical vector TRUE = missing FALSE = complete
#'
any_row_miss <- function(x) {
apply(data.frame(x), MARGIN = 1, FUN = function(x) anyNA(x))
}
#' Add a counter variable for a span of dataframe
#'
#' Adds a variable, `span_counter` to a dataframe. Used internally to facilitate
#' counting of missing values over a given span.
#'
#' @param data data.frame
#' @param span_size integer
#'
#' @return data.frame with extra variable "span_counter".
#'
#' @examples
#' \dontrun{
#' # add_span_counter(pedestrian, span_size = 100)
#' }
add_span_counter <- function(data, span_size) {
dplyr::mutate(data,
span_counter = rep(
x = 1:ceiling(nrow(data)),
each = span_size,
length.out = nrow(data)
)
)
}
#' check the levels of many things
#'
#' this function is used internally to check what the levels are of the dataframe.
#'
#' @param x data.frame, usually
#'
#' @return a list containing the levels of everything
#' @keywords internal
#' @noRd
what_levels <- function(x) purrr::map(x, levels)
quo_to_shade <- function(...) {
# Use ensyms() rather than quos() because the latter allows
# arbitrary expressions. These variables are forwarded to select(),
# so potential expressions are `starts_with()`, `one_of()`, etc.
# The naniar code generally assumes that only symbols are passed in
# dots. `ensyms()` is a way of ensuring the input types.
vars <- rlang::ensyms(...)
# Adding `_NA` suffix to user symbols
shadow_chr <- purrr::map(vars, as_string) %>% paste0("_NA")
# Casting back to symbols
shadow_vars <- rlang::syms(shadow_chr)
return(shadow_vars)
}
class_glue <- function(x) {
class(x) %>% glue::glue_collapse(sep = ", ", last = ", or ")
}
diag_na <- function(size = 5) {
dna <- diag(
x = NA,
nrow = size,
ncol = size
)
suppressMessages(
tibble::as_tibble(dna,
.name_repair = "unique"
)
) %>%
set_names(paste0("x", seq_len(ncol(.))))
}
coerce_fct_na_explicit <- function(x) {
if (is.factor(x) & anyNA(x)) {
forcats::fct_na_value_to_level(x, level = "NA")
} else {
x
}
}
# any_shade <- function(x) any(grepl("^NA|^NA_", x))
any_row_shade <- function(x) {
apply(data.frame(x), MARGIN = 1, FUN = function(x) any(grepl("^NA|^NA_", x)))
}
vecIsFALSE <- Vectorize(isFALSE)
are_any_false <- function(x, ...) any(vecIsFALSE(x), ...)
check_btn_0_1 <- function(prop,
call = rlang::caller_env()) {
if (prop < 0 || prop > 1) {
cli::cli_abort(
message = c(
"{.var prop} must be between 0 and 1",
"{.var prop} is {prop}"
),
call = call
)
}
}
check_is_integer <- function(x,
call = rlang::caller_env()) {
if (x < 0) {
cli::cli_abort(
message = c(
"{.var x} must be greater than 0",
"{.var x} is {.val {x}}"
),
call = call
)
}
vctrs::vec_cast(x, integer())
}
check_is_scalar <- function(x,
call = rlang::caller_env()) {
if (length(x) != 1) {
cli::cli_abort(
message = c(
"{.var x} must be length 1",
"{.var x} is {x}, and {.var x} has length: {length(x)}"
),
call = call
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.