demo/nanosecondDelayExample.R

library(nanotime)
suppressMessages(library(data.table))
suppressMessages(library(ggplot2))

set.seed(42)
N <- 300
rainyday <- ISOdatetime(2016,9,28,8,30,0) # made up
shinyday <- ISOdatetime(2016,9,21,8,30,0) # made up too
rdsent <- nanotime(rainyday) + cumsum(10*rpois(N, lambda=4)) 	# random sent time 
sdsent <- nanotime(shinyday) + cumsum(10*rpois(N, lambda=4))	# identical sent process for both
rdrecv <- rdsent + 10*rlnorm(N, 0.30, 0.25)                     # postulate higher mean and sd
sdrecv <- sdsent + 10*rlnorm(N, 0.10, 0.20)		            	# for rainy than shiny
raw <- data.table(rdsent, rdrecv, sdsent, sdrecv)
raw[, `:=`(rainy=as.numeric(rdrecv-rdsent),
           shiny=as.numeric(sdrecv-sdsent))]

## melt into long format
plotdata <- melt(raw[,.(rainy,shiny)], measure.vars=1:2, variable.name="day", value.name="time")
## and plot
ggplot(plotdata, aes(day, time)) + geom_violin(aes(fill=day)) + coord_flip() + 
    ylab("Message Time in Nanoseconds") + xlab("Weather Conditions") +
    ggtitle("Nanosecond Delay", "Under Different Weather Conditions")

tfile <- tempfile(pattern="raw", fileext=".csv")
fwrite(raw, file=tfile)
cooked <- fread(tfile)
## csv files are not 'typed' so need to recover types explicitly
cooked[, `:=`(rdsent=nanotime(rdsent),
              rdrecv=nanotime(rdrecv),
              sdsent=nanotime(sdsent),
              sdrecv=nanotime(sdrecv))]
## now saved and restrored data are identical
all.equal(raw, cooked)

Try the nanotime package in your browser

Any scripts or data that you put into this service are public.

nanotime documentation built on June 22, 2024, 10:26 a.m.