Nothing
#' Racial Isolation Index based on Anthopolos _et al._ (2011)
#'
#' Compute the spatial Racial Isolation Index (Anthopolos) of selected subgroup(s).
#'
#' @param geo Character string specifying the geography of the data either census tracts \code{geo = "tract"} (the default) or counties \code{geo = "county"}.
#' @param year Numeric. The year to compute the estimate. The default is 2020, and the years 2009 onward are currently available.
#' @param subgroup Character string specifying the racial/ethnic subgroup(s). See Details for available choices.
#' @param quiet Logical. If TRUE, will display messages about potential missing census information. The default is FALSE.
#' @param ... Arguments passed to \code{\link[tidycensus]{get_acs}} to select state, county, and other arguments for census characteristics
#'
#' @details This function will compute the spatial Racial Isolation Index (RI) of U.S. census tracts or counties for a specified geographical extent (e.g., the entire U.S. or a single state) based on Anthopolos _et al._ (2011) \doi{10.1016/j.sste.2011.06.002} who originally designed the metric for the racial isolation of non-Hispanic Black individuals. This function provides the computation of RI for any of the U.S. Census Bureau race/ethnicity subgroups (including Hispanic and non-Hispanic individuals).
#'
#' The function uses the \code{\link[tidycensus]{get_acs}} function to obtain U.S. Census Bureau 5-year American Community Survey characteristics used for the geospatial computation. The yearly estimates are available for 2009 onward when ACS-5 data are available but are available from other U.S. Census Bureau surveys. The twenty racial/ethnic subgroups (U.S. Census Bureau definitions) are:
#' \itemize{
#' \item **B03002_002**: not Hispanic or Latino \code{"NHoL"}
#' \item **B03002_003**: not Hispanic or Latino, white alone\code{"NHoLW"}
#' \item **B03002_004**: not Hispanic or Latino, Black or African American alone \code{"NHoLB"}
#' \item **B03002_005**: not Hispanic or Latino, American Indian and Alaska Native alone \code{"NHoLAIAN"}
#' \item **B03002_006**: not Hispanic or Latino, Asian alone \code{"NHoLA"}
#' \item **B03002_007**: not Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{"NHoLNHOPI"}
#' \item **B03002_008**: not Hispanic or Latino, Some other race alone \code{"NHoLSOR"}
#' \item **B03002_009**: not Hispanic or Latino, Two or more races \code{"NHoLTOMR"}
#' \item **B03002_010**: not Hispanic or Latino, Two races including Some other race \code{"NHoLTRiSOR"}
#' \item **B03002_011**: not Hispanic or Latino, Two races excluding Some other race, and three or more races \code{"NHoLTReSOR"}
#' \item **B03002_012**: Hispanic or Latino \code{"HoL"}
#' \item **B03002_013**: Hispanic or Latino, white alone \code{"HoLW"}
#' \item **B03002_014**: Hispanic or Latino, Black or African American alone \code{"HoLB"}
#' \item **B03002_015**: Hispanic or Latino, American Indian and Alaska Native alone \code{"HoLAIAN"}
#' \item **B03002_016**: Hispanic or Latino, Asian alone \code{"HoLA"}
#' \item **B03002_017**: Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{"HoLNHOPI"}
#' \item **B03002_018**: Hispanic or Latino, Some other race alone \code{"HoLSOR"}
#' \item **B03002_019**: Hispanic or Latino, Two or more races \code{"HoLTOMR"}
#' \item **B03002_020**: Hispanic or Latino, Two races including Some other race \code{"HoLTRiSOR"}
#' \item **B03002_021**: Hispanic or Latino, Two races excluding Some other race, and three or more races \code{"HoLTReSOR"}
#' }
#'
#' Use the internal \code{state} and \code{county} arguments within the \code{\link[tidycensus]{get_acs}} function to specify geographic extent of the data output. NOTE: Current version does not correct for edge effects (e.g., census geographies along the specified spatial extent border, coastline, or U.S.-Mexico / U.S.-Canada border) may have few neighboring census geographies, and RI values in these census geographies may be unstable. A stop-gap solution for the former source of edge effect is to compute the RI for neighboring census geographies (i.e., the states bordering a study area of interest) and then use the estimates of the study area of interest.
#'
#' A census geography (and its neighbors) that has nearly all of its population who identify with the specified race/ethnicity subgroup(s) (e.g., non-Hispanic or Latino, Black or African American alone) will have an RI value close to 1. In contrast, a census geography (and its neighbors) that has nearly none of its population who identify with the specified race/ethnicity subgroup(s) (e.g., not non-Hispanic or Latino, Black or African American alone) will have an RI value close to 0.
#'
#' @return An object of class 'list'. This is a named list with the following components:
#'
#' \describe{
#' \item{\code{ri}}{An object of class 'tbl' for the GEOID, name, RI, and raw census values of specified census geographies.}
#' \item{\code{missing}}{An object of class 'tbl' of the count and proportion of missingness for each census variable used to compute RI.}
#' }
#'
#' @import dplyr
#' @importFrom Matrix sparseMatrix
#' @importFrom sf st_drop_geometry st_geometry st_intersects
#' @importFrom stringr str_trim
#' @importFrom tidycensus get_acs
#' @importFrom tidyr pivot_longer separate
#' @export
#'
#' @seealso \code{\link[tidycensus]{get_acs}} for additional arguments for geographic extent selection (i.e., \code{state} and \code{county}).
#'
#' @examples
#' \dontrun{
#' # Wrapped in \dontrun{} because these examples require a Census API key.
#'
#' # Tract-level metric (2020)
#' anthopolos(geo = "tract", state = "GA",
#' year = 2020, subgroup = c("NHoLB", "HoLB"))
#'
#' # County-level metric (2020)
#' anthopolos(geo = "county", state = "GA",
#' year = 2020, subgroup = c("NHoLB", "HoLB"))
#'
#' }
#'
anthopolos <- function(geo = "tract", year = 2020, subgroup, quiet = FALSE, ...) {
# Check arguments
match.arg(geo, choices = c("county", "tract"))
stopifnot(is.numeric(year), year >= 2009) # all variables available 2009 onward
match.arg(subgroup, several.ok = TRUE,
choices = c("NHoL", "NHoLW", "NHoLB", "NHoLAIAN", "NHoLA", "NHoLNHOPI",
"NHoLSOR", "NHoLTOMR", "NHoLTRiSOR", "NHoLTReSOR",
"HoL", "HoLW", "HoLB", "HoLAIAN", "HoLA", "HoLNHOPI",
"HoLSOR", "HoLTOMR", "HoLTRiSOR", "HoLTReSOR"))
# Select census variables
vars <- c(TotalPop = "B03002_001",
NHoL = "B03002_002",
NHoLW = "B03002_003",
NHoLB = "B03002_004",
NHoLAIAN = "B03002_005",
NHoLA = "B03002_006",
NHoLNHOPI = "B03002_007",
NHoLSOR = "B03002_008",
NHoLTOMR = "B03002_009",
NHoLTRiSOR = "B03002_010",
NHoLTReSOR = "B03002_011",
HoL = "B03002_012",
HoLW = "B03002_013",
HoLB = "B03002_014",
HoLAIAN = "B03002_015",
HoLA = "B03002_016",
HoLNHOPI = "B03002_017",
HoLSOR = "B03002_018",
HoLTOMR = "B03002_019",
HoLTRiSOR = "B03002_020",
HoLTReSOR = "B03002_021")
selected_vars <- vars[c("TotalPop", subgroup)]
out_names <- names(selected_vars) # save for output
prefix <- "subgroup"
suffix <- seq(1:length(subgroup))
names(selected_vars) <- c("TotalPop", paste(prefix, suffix, sep = ""))
in_names <- paste(names(selected_vars), "E", sep = "")
# Acquire RI variables and sf geometries
ri_data <- suppressMessages(suppressWarnings(tidycensus::get_acs(geography = geo,
year = year,
output = "wide",
variables = selected_vars,
geometry = TRUE, ...)))
if (geo == "tract") {
ri_data <- ri_data %>%
tidyr::separate(NAME, into = c("tract", "county", "state"), sep = ",") %>%
dplyr::mutate(tract = gsub("[^0-9\\.]","", tract))
} else {
ri_data <- ri_data %>% tidyr::separate(NAME, into = c("county", "state"), sep = ",")
}
ri_data <- ri_data %>%
dplyr::mutate(subgroup = rowSums(sf::st_drop_geometry(ri_data[ , in_names[-1]])))
# Compute RI
## From Anthopolos et al. (2011) https://doi.org/10.1016/j.sste.2011.06.002
## RI_{im} = (Sigma_{j∈∂_{i}} w_{ij} * T_{jm}) / (Sigma_{j∈∂_{i}} w_{ij} * T_{j})
## Where:
## ∂_{i} denotes the set of index units i and its neighbors
## Given M mutually exclusive racial/ethnic subgroups, m indexes the subgroups of M
## T_{i} denotes the total population in region i (TotalPop)
## T_{im} denotes the population of the selected subgroup(s) (subgroup1, ...)
## w_{ij} denotes a nXn first-order adjacency matrix, where n is the number of census geometries in the study area
### and the entries of w_{ij} are set to 1 if a boundary is shared by region i and region j and zero otherwise
### Entries of the main diagonal (since i∈∂_{i}, w_{ij} = w_{ii} when j = i) of w_{ij} are set to 1.5
### such that the weight of the index unit, i, is larger than the weights assigned to adjacent tracts
## Geospatial adjacency matrix (wij)
tmp <- sf::st_intersects(sf::st_geometry(ri_data), sparse = TRUE)
names(tmp) <- as.character(seq_len(nrow(ri_data)))
tmpL <- length(tmp)
tmpcounts <- unlist(Map(length, tmp))
tmpi <- rep(1:tmpL, tmpcounts)
tmpj <- unlist(tmp)
wij <- Matrix::sparseMatrix(i = tmpi, j = tmpj, x = 1, dims = c(tmpL, tmpL))
diag(wij) <- 1.5
## Compute
ri_data <- sf::st_drop_geometry(ri_data) # drop geometries (can join back later)
RIim <- list()
for (i in 1:dim(wij)[1]){
RIim[[i]] <- sum(as.matrix(wij[i, ])*ri_data[ , "subgroup"]) / sum(as.matrix(wij[i, ])*ri_data[, "TotalPopE"])
}
ri_data$RI <- unlist(RIim)
# Warning for missingness of census characteristics
missingYN <- ri_data[ , in_names]
names(missingYN) <- out_names
missingYN <- missingYN %>%
tidyr::pivot_longer(cols = dplyr::everything(),
names_to = "variable",
values_to = "val") %>%
dplyr::group_by(variable) %>%
dplyr::summarise(total = dplyr::n(),
n_missing = sum(is.na(val)),
percent_missing = paste0(round(mean(is.na(val)) * 100, 2), " %"))
if (quiet == FALSE) {
# Warning for missing census data
if (sum(missingYN$n_missing) > 0) {
message("Warning: Missing census data")
}
}
# Format output
if (geo == "tract") {
ri <- ri_data %>%
dplyr::select(c("GEOID",
"state",
"county",
"tract",
"RI",
dplyr::all_of(in_names)))
names(ri) <- c("GEOID", "state", "county", "tract", "RI", out_names)
} else {
ri <- ri_data %>%
dplyr::select(c("GEOID",
"state",
"county",
"RI",
dplyr::all_of(in_names)))
names(ri) <- c("GEOID", "state", "county", "RI", out_names)
}
ri <- ri %>%
dplyr::mutate(state = stringr::str_trim(state),
county = stringr::str_trim(county)) %>%
dplyr::arrange(GEOID) %>%
dplyr::as_tibble()
out <- list(ri = ri,
missing = missingYN)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.