R/bravo.R

Defines functions bravo

Documented in bravo

#' Educational Isolation Index based on Bravo et al. (2021)
#'
#' Compute the spatial Educational Isolation Index (Bravo) of selected educational attainment category(ies).
#'
#' @param geo Character string specifying the geography of the data either census tracts \code{geo = 'tract'} (the default) or counties \code{geo = 'county'}.
#' @param year Numeric. The year to compute the estimate. The default is 2020, and the years 2009 onward are currently available.
#' @param subgroup Character string specifying the educational attainment category(ies). See Details for available choices.
#' @param crs Numeric or character string specifying the coordinate reference system to compute the distance-based metric. The default is Albers North America \code{crs = 'ESRI:102008'}.
#' @param quiet Logical. If TRUE, will display messages about potential missing census information. The default is FALSE.
#' @param ... Arguments passed to \code{\link[tidycensus]{get_acs}} to select state, county, and other arguments for census characteristics
#'
#' @details This function will compute the spatial Educational Isolation Index (\emph{EI}) of U.S. census tracts or counties for a specified geographical extent (e.g., the entire U.S. or a single state) based on Bravo et al. (2021) \doi{10.3390/ijerph18179384} who originally designed the metric for the educational isolation of individual without a college degree. This function provides the computation of \emph{EI} for any of the U.S. Census Bureau educational attainment levels.
#'
#' The function uses the \code{\link[tidycensus]{get_acs}} to obtain U.S. Census Bureau 5-year American Community Survey characteristics used for the geospatial computation. The yearly estimates are available for 2009 onward when ACS-5 data are available but are available from other U.S. Census Bureau surveys. The five educational attainment levels (U.S. Census Bureau definitions) are:
#' \itemize{
#'  \item \strong{B06009_002}: Less than high school graduate \code{'LtHS'}
#'  \item \strong{B06009_003}: High school graduate (includes equivalency) \code{'HSGiE'}
#'  \item \strong{B06009_004}: Some college or associate's degree \code{'SCoAD'}
#'  \item \strong{B06009_005}: Bachelor's degree \code{'BD'}
#'  \item \strong{B06009_006}: Graduate or professional degree \code{'GoPD'}
#' }
#' Note: If \code{year = 2009}, then the ACS-5 data (2005-2009) are from the \strong{B15002} question.
#'
#' Use the internal \code{state} and \code{county} arguments within the \code{\link[tidycensus]{get_acs}} function to specify geographic extent of the data output. NOTE: Current version does not correct for edge effects (e.g., census geographies along the specified spatial extent border, coastline, or U.S.-Mexico / U.S.-Canada border) may have few neighboring census geographies, and \emph{EI} values in these census geographies may be unstable. A stop-gap solution for the former source of edge effect is to compute the \emph{EI} for neighboring census geographies (i.e., the states bordering a study area of interest) and then use the estimates of the study area of interest.
#'
#' A census geography (and its neighbors) that has nearly all of its population with the specified educational attainment category (e.g., a Bachelor's degree or more) will have an \emph{EI} value close to 1. In contrast, a census geography (and its neighbors) that is nearly none of its population with the specified educational attainment category (e.g., less than a Bachelor's degree) will have an \emph{EI} value close to 0.
#'
#' @return An object of class 'list'. This is a named list with the following components:
#'
#' \describe{
#' \item{\code{ei}}{An object of class 'tbl' for the GEOID, name, \emph{EI}, and raw census values of specified census geographies.}
#' \item{\code{missing}}{An object of class 'tbl' of the count and proportion of missingness for each census variable used to compute \emph{EI}.}
#' }
#' 
#' @seealso \code{\link[tidycensus]{get_acs}} for additional arguments for geographic extent selection (i.e., \code{state} and \code{county}).
#' @seealso Racial Isolation Index: \code{\link{anthopolos}}
#' 
#' @references Bravo, MA, Leong, MC, Gelfand, AE, & Miranda, ML (2021) Assessing Disparity Using Measures of Racial and Educational Isolation. \emph{International Journal of Environmental Research and Public Health}, 18(17):9384. \doi{10.3390/ijerph18179384}
#' 
#' @import dplyr
#' @importFrom Matrix sparseMatrix
#' @importFrom sf st_drop_geometry st_geometry st_intersects st_transform
#' @importFrom stats setNames
#' @importFrom stringr str_trim
#' @importFrom tidycensus get_acs
#' @importFrom tidyr pivot_longer separate
#' @export
#'
#' 
#'
#' @examples
#' \dontrun{
#' # Wrapped in \dontrun{} because these examples require a Census API key.
#'
#'   # Educational Isolation Index (a measure of exposure)
#'   ## of less than some college or associate's degree attainment
#'   ## in census tracts of Georgia, U.S.A. (2020)
#'   bravo(
#'     geo = 'tract',
#'     state = 'GA',
#'     year = 2020,
#'     subgroup = c('LtHS', 'HSGiE')
#'    )
#'
#' }
#'
bravo <- function(geo = 'tract',
                  year = 2020,
                  subgroup,
                  crs = 'ESRI:102008',
                  quiet = FALSE,
                  ...) {
  
  # Check arguments
  match.arg(geo, choices = c('county', 'tract'))
  stopifnot(is.numeric(year), year >= 2009) # all variables available 2009 onward
  match.arg(
    subgroup,
    several.ok = TRUE,
    choices = c('LtHS', 'HSGiE', 'SCoAD', 'BD', 'GoPD')
  )
  
  # Select census variables
  vars <- c(
    TotalPop = 'B06009_001',
    LtHS = 'B06009_002',
    HSGiE = 'B06009_003',
    SCoAD = 'B06009_004',
    BD = 'B06009_005',
    GoPD = 'B06009_006'
  )
  
  selected_vars <- vars[c('TotalPop', subgroup)]
  
  if (year == 2009) {
    vars <- matrix(
      c(
        'TotalPop',
        'TotalPop',
        'B15002_001',
        'LtHS',
        'mNSC',
        'B15002_003',
        'LtHS',
        'mNt4G',
        'B15002_004',
        'LtHS',
        'm5t6G',
        'B15002_005',
        'LtHS',
        'm7t8G',
        'B15002_006',
        'LtHS',
        'm9G',
        'B15002_007',
        'LtHS',
        'm10G',
        'B15002_008',
        'LtHS',
        'm11G',
        'B15002_009',
        'LtHS',
        'm12GND',
        'B15002_010',
        'HSGiE',
        'mHSGGEDoA',
        'B15002_011',
        'SCoAD',
        'mSClt1Y',
        'B15002_012',
        'SCoAD',
        'mSC1oMYND',
        'B15002_013',
        'SCoAD',
        'mAD',
        'B15002_014',
        'BD',
        'mBD',
        'B15002_015',
        'GoPD',
        'mMD',
        'B15002_016',
        'GoPD',
        'mPSD',
        'B15002_017',
        'GoPD',
        'mDD',
        'B15002_018',
        'LtHS',
        'fNSC',
        'B15002_020',
        'LtHS',
        'fNt4G',
        'B15002_021',
        'LtHS',
        'f5t6G',
        'B15002_022',
        'LtHS',
        'f7t8G',
        'B15002_023',
        'LtHS',
        'f9G',
        'B15002_024',
        'LtHS',
        'f10G',
        'B15002_025',
        'LtHS',
        'f11G',
        'B15002_026',
        'LtHS',
        'f12GND',
        'B15002_027',
        'HSGiE',
        'fHSGGEDoA',
        'B15002_028',
        'SCoAD',
        'fSClt1Y',
        'B15002_029',
        'SCoAD',
        'fSC1oMYND',
        'B15002_030',
        'SCoAD',
        'fAD',
        'B15002_031',
        'BD',
        'fBD',
        'B15002_032',
        'GoPD',
        'fMD',
        'B15002_033',
        'GoPD',
        'fPSD',
        'B15002_034',
        'GoPD',
        'fDD',
        'B15002_035'
      ),
      nrow = 33,
      ncol = 3,
      byrow = TRUE
    )
    
    selected_vars <- stats::setNames(
      vars[vars[, 1] %in% c('TotalPop', subgroup) , 3],
      vars[vars[, 1] %in% c('TotalPop', subgroup) , 2]
    )
  }
  
  out_names <- names(selected_vars) # save for output
  prefix <- 'subgroup'
  suffix <- seq(1:length(selected_vars[-1]))
  names(selected_vars) <- c('TotalPop', paste0(prefix, suffix))
  in_names <- paste0(names(selected_vars), 'E')
  
  # Acquire EI variables and sf geometries
  out_dat <- suppressMessages(suppressWarnings(
    tidycensus::get_acs(
      geography = geo,
      year = year,
      output = 'wide',
      variables = selected_vars,
      geometry = TRUE,
      ...
    )
  ))
  
  if (geo == 'tract') {
    out_dat <- out_dat %>%
      tidyr::separate(NAME, into = c('tract', 'county', 'state'), sep = ',') %>%
      dplyr::mutate(tract = gsub('[^0-9\\.]', '', tract))
  } else {
    out_dat <- out_dat %>% 
      tidyr::separate(NAME, into = c('county', 'state'), sep = ',')
  }
  
  out_dat <- out_dat %>%
    dplyr::mutate(subgroup = rowSums(sf::st_drop_geometry(out_dat[, in_names[-1]])))
  
  # Compute EI
  ## From Bravo et al. (2021) https://doi.org/10.3390/ijerph18179384
  ## EI_{im} = (Sigma_{j∈∂_{i}} w_{ij} * T_{jm}) / (Sigma_{j∈∂_{i}} w_{ij} * T_{j})
  ## Where:
  ## ∂_{i} denotes the set of index units i and its neighbors
  ## Given M mutually exclusive subgroups of educational attainment categories, m indexes the subgroups of M
  ## T_{i} denotes the total population in region i (TotalPop)
  ## T_{im} denotes the population of the selected subgroup(s) (subgroup1, ...)
  ## w_{ij} denotes a nXn first-order adjacency matrix, where n is the number of census geometries in the study area
  ### and the entries of w_{ij} are set to 1 if a boundary is shared by region i and region j and zero otherwise
  ### Entries of the main diagonal (since i∈∂_{i}, w_{ij} = w_{ii} when j = i) of w_{ij} are set to 1.5
  ### such that the weight of the index unit, i, is larger than the weights assigned to adjacent tracts
  
  ## Geospatial adjacency matrix (w_ij)
  tmp <- out_dat %>%
    sf::st_transform(crs = crs) %>%
    sf::st_geometry() %>%
    sf::st_intersects(sparse = TRUE)
  names(tmp) <- as.character(seq_len(nrow(out_dat)))
  tmp_L <- length(tmp)
  tmp_counts <- unlist(Map(length, tmp))
  tmp_i <- rep(1:tmp_L, tmp_counts)
  tmp_j <- unlist(tmp)
  w_ij <- Matrix::sparseMatrix(
    i = tmp_i,
    j = tmp_j,
    x = 1,
    dims = c(tmp_L, tmp_L)
  )
  diag(w_ij) <- 1.5
  
  ## Compute
  out_dat <- out_dat %>%
    sf::st_drop_geometry() # drop geometries (can join back later)
  out_tmp <- list()
  for (i in 1:dim(w_ij)[1]) {
    out_tmp[[i]] <- sum(as.matrix(w_ij[i,]) * out_dat[, 'subgroup']) / 
      sum(as.matrix(w_ij[i,]) * out_dat[, 'TotalPopE'])
  }
  out_dat$EI <- unlist(out_tmp)
  
  # Warning for missingness of census characteristics
  missingYN <- out_dat[, in_names]
  names(missingYN) <- out_names
  missingYN <- missingYN %>%
    tidyr::pivot_longer(
      cols = dplyr::everything(),
      names_to = 'variable',
      values_to = 'val'
    ) %>%
    dplyr::group_by(variable) %>%
    dplyr::summarise(
      total = dplyr::n(),
      n_missing = sum(is.na(val)),
      percent_missing = paste0(round(mean(is.na(val)) * 100, 2), ' %')
    )
  
  if (quiet == FALSE) {
    # Warning for missing census data
    if (sum(missingYN$n_missing) > 0) {
      message('Warning: Missing census data')
    }
  }
  
  # Format output
  if (geo == 'tract') {
    out <- out_dat %>%
      dplyr::select(c(
        GEOID,
        state,
        county,
        tract,
        EI,
        dplyr::all_of(in_names)
      ))
    names(out) <- c('GEOID', 'state', 'county', 'tract', 'EI', out_names)
  } else {
    out <- out_dat %>%
      dplyr::select(c(GEOID, state, county, EI, dplyr::all_of(in_names)))
    names(out) <- c('GEOID', 'state', 'county', 'EI', out_names)
  }
  
  out <- out %>%
    dplyr::mutate(
      state = stringr::str_trim(state),
      county = stringr::str_trim(county)
    ) %>%
    dplyr::arrange(GEOID) %>%
    dplyr::as_tibble()
  
  out <- list(ei = out, missing = missingYN)
  
  return(out)
}

Try the ndi package in your browser

Any scripts or data that you put into this service are public.

ndi documentation built on Sept. 9, 2025, 5:26 p.m.