Nothing
#' @title Asthma-01 Populations
#'
#' @description
#'
#' Filters data down to the target populations for Asthma-01, and categorizes
#' records to identify needed information for the calculations.
#'
#' Identifies key categories related to asthma-related incidents in an EMS
#' dataset, specifically focusing on cases where 911 was called for respiratory
#' distress, and certain medications were administered. This function segments
#' the data by age into adult and pediatric populations, computing the
#' proportion of cases that received beta-agonist treatment.
#'
#' @param df A data.frame or tibble containing EMS data. Default is `NULL`.
#' @param patient_scene_table A data.frame or tibble containing at least
#' ePatient and eScene fields as a fact table. Default is `NULL`.
#' @param response_table A data.frame or tibble containing at least the
#' eResponse fields needed for this measure's calculations. Default is `NULL`.
#' @param situation_table A data.frame or tibble containing at least the
#' eSituation fields needed for this measure's calculations. Default is
#' `NULL`.
#' @param medications_table A data.frame or tibble containing at least the
#' eMedications fields needed for this measure's calculations. Default is
#' `NULL`.
#' @param erecord_01_col The column representing the EMS record unique
#' identifier. Default is `NULL`.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col Column representing the patient's numeric age agnostic
#' of unit.
#' @param epatient_16_col Column representing the patient's age unit ("Years",
#' "Months", "Days", "Hours", or "Minute").
#' @param eresponse_05_col Column that contains eResponse.05.
#' @param esituation_11_col Column that contains eSituation.11 provider primary
#' impression data.
#' @param esituation_12_col Column that contains all eSituation.12 values as
#' (possible a single comma-separated list), provider secondary impression
#' data.
#' @param emedications_03_col Column that contains all eMedications.03 values as
#' a single comma-separated list.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # If you are sourcing your data from a SQL database connection
#' # or if you have your data in several different tables,
#' # you can pass table inputs versus a single data.frame or tibble
#'
#' # create tables to test correct functioning
#'
#' # patient table
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = 1:3,
#' incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01")),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-01-01")),
#' epatient_15 = c(25, 5, 2),
#' epatient_16 = c("years", "years", "months")
#'
#' )
#'
#' # response table
#' response_table <- tibble::tibble(
#'
#' erecord_01 = 1:3,
#' eresponse_05 = c("2205001", "2205009", "2205003")
#'
#' )
#'
#' # situation table
#' situation_table <- tibble::tibble(
#'
#' erecord_01 = 1:3,
#' esituation_11 = c("weakness", "asthma", "bronchospasm"),
#' esituation_12 = c("asthma", "weakness", "weakness")
#' )
#'
#' # medications table
#' medications_table <- tibble::tibble(
#'
#' erecord_01 = 1:3,
#' emedications_03 = c("albuterol", "levalbuterol", "metaproterenol")
#'
#' )
#'
#' # test the success of the function
#' result <- asthma_01_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' situation_table = situation_table,
#' medications_table = medications_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' esituation_11_col = esituation_11,
#' esituation_12_col = esituation_12,
#' emedications_03_col = emedications_03
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
asthma_01_population <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
medications_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
emedications_03_col) {
# ensure that not all table arguments AND the df argument are fulfilled
# user only passes df or all table arguments
if(
any(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(situation_table),
!is.null(medications_table)
)
&&
!is.null(df)
) {
cli::cli_abort("{.fn asthma_01_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# ensure that df or all table arguments are fulfilled
if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(situation_table),
is.null(medications_table)
)
&& is.null(df)
) {
cli::cli_abort("{.fn asthma_01_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# ensure all *_col arguments are fulfilled
if(
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(eresponse_05_col),
missing(esituation_11_col),
missing(esituation_12_col),
missing(emedications_03_col)
)
) {
cli::cli_abort("One or more of the *_col arguments is missing. Please make sure you pass an unquoted column to each of the *_col arguments to run {.fn asthma_01_population}.")
}
# 911 codes for eresponse.05
codes_911 <- "2205001|2205003|2205009|Emergency Response \\(Primary Response Area\\)|Emergency Response \\(Intercept\\)|Emergency Response \\(Mutual Aid\\)"
# get codes as a regex to filter primary/secondary impression fields
beta_agonist <- "435|7688|214199|237159|487066|1154062|1163444|1649559|1165719|2108209|2108252|albuterol|ipratropium|levalbuterol|metaproterenol"
# codes for asthma or acute bronchospasm
asthma_codes <- "(?:J45|J98.01)|asthma|acute bronchospasm"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
))
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `asthma_01_population()`",
total = 10,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
# utilize applicable tables to analyze the data for the measure
if(
all(!is.null(patient_scene_table),
!is.null(response_table),
!is.null(situation_table),
!is.null(medications_table)
) && is.null(df)
) {
if(!(
(is.data.frame(patient_scene_table) && tibble::is_tibble(patient_scene_table)) ||
(is.data.frame(response_table) && tibble::is_tibble(response_table)) ||
(is.data.frame(situation_table) && tibble::is_tibble(situation_table)) ||
(is.data.frame(medications_table) && tibble::is_tibble(medications_table))
)
) {
cli::cli_abort("One or more of the tables passed to {.fn asthma_01_population} were not of class {.cls data.frame} nor {.cls tibble}. When passing multiple tables to {.fn asthma_01_population}, all tables must be of class {.cls data.frame} or {.cls tibble}.")
}
# only check the date columns if they are in fact passed
if(
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
)
{
# use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if ((!lubridate::is.Date(patient_scene_table[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(patient_dob)]]))) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or similar class."
)
}
}
progress_bar_population
# progress update, these will be repeated throughout the script
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
# progress update, these will be repeated throughout the script
if(all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)) {
# filter the table to get the initial population ages >= 2 years
final_data <- patient_scene_table |>
# create the age in years variable
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter the table to get the initial population ages >= 2 years
final_data <- patient_scene_table |>
# create the age in years variable
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# Identify Records that have specified asthma
asthma_data <- situation_table |>
dplyr::select({{ erecord_01_col }}, {{ esituation_11_col}}, {{esituation_12_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
c({{ esituation_11_col}}, {{esituation_12_col }}), ~ grepl(pattern = asthma_codes, x = ., ignore.case = TRUE)
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# check to ensure beta agonist was used
beta_agonist_data <- medications_table |>
dplyr::select({{ erecord_01_col }}, {{ emedications_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(pattern = beta_agonist, x = {{ emedications_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# get the computing population that is the full dataset with identified categories
computing_population <- final_data |>
dplyr::mutate(call_911 = {{ erecord_01_col }} %in% call_911_data,
asthma = {{ erecord_01_col }} %in% asthma_data,
beta_agonist_check = {{ erecord_01_col }} %in% beta_agonist_data
)
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# asthma patients
asthma,
# 911 calls
call_911
)
# Adult and Pediatric Populations
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
if(
# use the system generated and calculated ages
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(calc_age_adult | system_age_adult)
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if(
# only use the system generated values
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("911 calls",
"Asthma cases",
"Beta agonist cases",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$call_911, na.rm = TRUE),
sum(computing_population$asthma, na.rm = TRUE),
sum(computing_population$beta_agonist_check, na.rm = TRUE),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
asthma.01.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(asthma.01.population)
} else if(
all(is.null(patient_scene_table), is.null(response_table), is.null(situation_table), is.null(medications_table)) && !is.null(df)
)
# utilize a dataframe to analyze the data for the measure analytics
{
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# only check the date columns if they are in fact passed
if(
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
)
{
# use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if ((!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or similar class."
)
}
}
progress_bar_population
# progress update, these will be repeated throughout the script
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
if(
# use the system generated and calculated ages
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)) {
# filter the table to get the total dataset with identified categories
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ esituation_11_col }},
{{ esituation_12_col }},
{{ emedications_03_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
# create the age in years variable
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18
)
} else if(
# only use the system generated values
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter the table to get the total dataset with identified categories
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ esituation_11_col }},
{{ esituation_12_col }},
{{ emedications_03_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
# create the age in years variable
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col}}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# asthma population
asthma_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ esituation_11_col }}, {{ esituation_12_col }}) |>
dplyr::distinct() |>
dplyr::filter(
# Identify Records that have specified asthma
dplyr::if_any(c({{ esituation_11_col}}, {{esituation_12_col }}), ~ grepl(pattern = asthma_codes, x = ., ignore.case = TRUE))
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# beta agonist use
beta_agonist_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ emedications_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
# check to ensure beta agonist was used
grepl(pattern = beta_agonist, x = {{ emedications_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# get the computing population that is the full dataset with identified categories
computing_population <- final_data |>
dplyr::mutate(call_911 = {{ erecord_01_col }} %in% call_911_data,
asthma = {{ erecord_01_col }} %in% asthma_data,
beta_agonist_check = {{ erecord_01_col }} %in% beta_agonist_data
)
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# asthma patients
asthma,
# 911 calls
call_911
)
# Adult and Pediatric Populations
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
if(
# use the system generated and calculated ages
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(calc_age_adult | system_age_adult)
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if(
# only use the system generated values
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("911 calls",
"Asthma cases",
"Beta agonist cases",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
length(call_911_data),
length(asthma_data),
length(beta_agonist_data),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
asthma.01.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(asthma.01.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.