Nothing
#' @title Pediatrics-03B Populations
#'
#' @description
#'
#' Filters data down to the target populations for Pediatrics-03B, and
#' categorizes records to identify needed information for the calculations.
#'
#' Identifies key categories related to diabetes/hypoglycemia incidents in an
#' EMS dataset, specifically focusing on cases where 911 was called for
#' diabetes/hypoglycemia distress, certain medications were administered, and a
#' weight is taken. This function segments the data into pediatric populations,
#' computing the proportion of cases that have a documented weight.
#'
#' @param df A data frame or tibble containing emergency response records.
#' Default is `NULL`.
#' @param patient_scene_table A data.frame or tibble containing only ePatient
#' and eScene fields as a fact table. Default is `NULL`.
#' @param response_table A data.frame or tibble containing only the eResponse
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param exam_table A data.frame or tibble containing only the eExam fields
#' needed for this measure's calculations. Default is `NULL`.
#' @param medications_table A data.frame or tibble containing only the
#' eMedications fields needed for this measure's calculations. Default is
#' `NULL`.
#' @param erecord_01_col Column for unique EMS record identifiers.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col Column giving the calculated age value.
#' @param epatient_16_col Column giving the provided age unit value.
#' @param eresponse_05_col Column containing the EMS response codes.
#' @param eexam_01_col Column containing documented weight information.
#' @param eexam_02_col Another column for weight documentation, if applicable.
#' @param emedications_03_col Column indicating medication administration.
#' @param emedications_04_col Column listing medications administered.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # create tables to test correct functioning
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' incident_date = as.Date(c("2025-01-01", "2025-01-05",
#' "2025-02-01", "2025-01-01",
#' "2025-06-01")
#' ),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01",
#' "2023-02-01", "2023-01-01",
#' "1970-06-01")
#' ),
#' epatient_15 = c(25, 5, 2, 2, 55), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Years", "Years")
#'
#' )
#'
#' response_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eresponse_05 = rep(2205001, 5)
#'
#' )
#'
#' exam_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eexam_01 = c(60, 59, 58, 57, 56),
#' eexam_02 = c("Red", "Purple", "Grey", "Yellow", "Orange")
#' )
#'
#' medications_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' emedications_03 = rep("stuff", 5),
#' emedications_04 = c("Inhalation", "pill", "liquid", "pill", "liquid"),
#'
#' )
#'
#' # test the success of the function
#'
#' result <- pediatrics_03b_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' exam_table = exam_table,
#' medications_table = medications_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' emedications_03_col = emedications_03,
#' emedications_04_col = emedications_04,
#' eexam_01_col = eexam_01,
#' eexam_02_col = eexam_02
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
pediatrics_03b_population <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
exam_table = NULL,
medications_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
eexam_01_col,
eexam_02_col,
emedications_03_col,
emedications_04_col
) {
if(
any(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(exam_table),
!is.null(medications_table)
)
&&
!is.null(df)
) {
cli::cli_abort("{.fn pediatrics_03b_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# ensure all *_col arguments are fulfilled
if(
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(eresponse_05_col),
missing(eexam_01_col),
missing(eexam_02_col),
missing(emedications_03_col),
missing(emedications_04_col)
)
) {
cli::cli_abort("One or more of the *_col arguments is missing. Please make sure you pass an unquoted column to each of the *_col arguments to run {.fn pediatrics_03b_population}.")
}
if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(exam_table),
is.null(medications_table)
)
&& is.null(df)
) {
cli::cli_abort("{.fn pediatrics_03b_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# 911 codes for eresponse.05
codes_911 <- "2205001|2205003|2205009|Emergency Response \\(Primary Response Area\\)|Emergency Response \\(Intercept\\)|Emergency Response \\(Mutual Aid\\)"
# non-weight-based medications
non_weight_based_meds <- "inhalation|topical|9927049|9927009"
# days, hours, minutes, months
minor_values <- "days|2516001|hours|2516003|minutes|2516005|months|2516007"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
))
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `pediatrics_03b_population()`",
total = 9,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
# utilize applicable tables to analyze the data for the measure
if(
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(exam_table),
!is.null(medications_table)
)
&& is.null(df)
) {
# Ensure df is a data frame or tibble
if (
any(!(is.data.frame(patient_scene_table) && tibble::is_tibble(patient_scene_table)) ||
!(is.data.frame(response_table) && tibble::is_tibble(response_table)) ||
!(is.data.frame(exam_table) && tibble::is_tibble(exam_table)) ||
!(is.data.frame(medications_table) && tibble::is_tibble(medications_table))
)
) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required for each of the *_table arguments."
)
)
}
# Only check the date columns if they are in fact passed
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# Use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
# Convert quosures to names and check the column classes
incident_date_name <- rlang::as_name(incident_date)
patient_dob_name <- rlang::as_name(patient_dob)
if ((!lubridate::is.Date(patient_scene_table[[incident_date_name]]) &
!lubridate::is.POSIXct(patient_scene_table[[incident_date_name]])) ||
(!lubridate::is.Date(patient_scene_table[[patient_dob_name]]) &
!lubridate::is.POSIXct(patient_scene_table[[patient_dob_name]]))) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or a similar class."
)
}
}
progress_bar_population
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_check1 = {{ epatient_15_col }} < 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check2 = !is.na({{ epatient_15_col }}) & grepl(pattern = minor_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check = system_age_check1 | system_age_check2,
# calculated age check
calc_age_check = patient_age_in_years_col < 18
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_check1 = {{ epatient_15_col }} < 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check2 = !is.na({{ epatient_15_col }}) & grepl(pattern = minor_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check = system_age_check1 | system_age_check2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# non-weight based medications
non_weight_based_meds_data <- medications_table |>
dplyr::select({{ erecord_01_col }}, {{ emedications_04_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = non_weight_based_meds,
x = {{ emedications_04_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# meds not missing
meds_not_missing_data <- medications_table |>
dplyr::select({{ erecord_01_col }}, {{ emedications_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(!is.na({{ emedications_03_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# documented weight 1
documented_weight_data1 <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_01_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ eexam_01_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# documented weight 2
documented_weight_data2 <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ eexam_02_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# assign variables to the final data
computing_population <- final_data |>
dplyr::mutate(NON_WEIGHT_BASED = {{ erecord_01_col }} %in% non_weight_based_meds_data,
MEDS_NOT_MISSING = {{ erecord_01_col }} %in% meds_not_missing_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
DOCUMENTED_WEIGHT1 = {{ erecord_01_col }} %in% documented_weight_data1,
DOCUMENTED_WEIGHT2 = {{ erecord_01_col }} %in% documented_weight_data2,
DOCUMENTED_WEIGHT = DOCUMENTED_WEIGHT1 | DOCUMENTED_WEIGHT2
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# age filter
system_age_check | calc_age_check,
# only rows where meds are passed
MEDS_NOT_MISSING,
# only 911 calls
CALL_911,
# exclude non-weight based meds
!NON_WEIGHT_BASED
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
initial_population <- computing_population |>
dplyr::filter(
# age filter
system_age_check,
# only rows where meds are passed
MEDS_NOT_MISSING,
# only 911 calls
CALL_911,
# exclude non-weight based meds
!NON_WEIGHT_BASED
)
}
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("Meds not missing",
"Non-Weight Based Meds",
"Documented Weight",
"911 calls",
"Peds denominator",
"Total dataset"
),
count = c(
sum(computing_population$MEDS_NOT_MISSING, na.rm = TRUE),
sum(computing_population$NON_WEIGHT_BASED, na.rm = TRUE),
sum(computing_population$DOCUMENTED_WEIGHT, na.rm = TRUE),
sum(computing_population$CALL_911, na.rm = TRUE),
nrow(initial_population),
nrow(computing_population)
)
)
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# get the population of interest
pediatrics.03b.population <- list(
filter_process = filter_counts,
initial_population = initial_population,
computing_population = computing_population
)
# get the summary of results, already filtered down to the target age group for the measure
cli::cli_progress_done(id = progress_bar_population)
# summary
return(pediatrics.03b.population)
} else if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(exam_table),
is.null(medications_table)
)
&& !is.null(df)
)
# utilize a dataframe to analyze the data for the measure analytics
{
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# only check the date columns if they are in fact passed
if(
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
)
{
# use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if ((!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or similar class."
)
}
}
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `pediatrics_03b_population()`",
total = 9,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
progress_bar_population
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ eexam_01_col }},
{{ eexam_02_col }},
{{ emedications_03_col }},
{{ emedications_04_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_check1 = {{ epatient_15_col }} < 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check2 = !is.na({{ epatient_15_col }}) & grepl(pattern = minor_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check = system_age_check1 | system_age_check2,
# calculated age check
calc_age_check = patient_age_in_years_col < 18
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ eexam_01_col }},
{{ eexam_02_col }},
{{ emedications_03_col }},
{{ emedications_04_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_check1 = {{ epatient_15_col }} < 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check2 = !is.na({{ epatient_15_col }}) & grepl(pattern = minor_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_check = system_age_check1 | system_age_check2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# non-weight based medications
non_weight_based_meds_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ emedications_04_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = non_weight_based_meds,
x = {{ emedications_04_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# meds not missing
meds_not_missing_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ emedications_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(!is.na({{ emedications_03_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# documented weight 1
documented_weight_data1 <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_01_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ eexam_01_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# documented weight 2
documented_weight_data2 <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ eexam_02_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# assign variables to the final data
computing_population <- final_data |>
dplyr::mutate(NON_WEIGHT_BASED = {{ erecord_01_col }} %in% non_weight_based_meds_data,
MEDS_NOT_MISSING = {{ erecord_01_col }} %in% meds_not_missing_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
DOCUMENTED_WEIGHT1 = {{ erecord_01_col }} %in% documented_weight_data1,
DOCUMENTED_WEIGHT2 = {{ erecord_01_col }} %in% documented_weight_data2,
DOCUMENTED_WEIGHT = DOCUMENTED_WEIGHT1 | DOCUMENTED_WEIGHT2
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# age filter
system_age_check | calc_age_check,
# only rows where meds are passed
MEDS_NOT_MISSING,
# only 911 calls
CALL_911,
# exclude non-weight based meds
!NON_WEIGHT_BASED
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
initial_population <- computing_population |>
dplyr::filter(
# age filter
system_age_check,
# only rows where meds are passed
MEDS_NOT_MISSING,
# only 911 calls
CALL_911,
# exclude non-weight based meds
!NON_WEIGHT_BASED
)
}
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("Meds not missing",
"Non-Weight Based Meds",
"Documented Weight",
"911 calls",
"Peds denominator",
"Total dataset"
),
count = c(
sum(computing_population$MEDS_NOT_MISSING, na.rm = TRUE),
sum(computing_population$NON_WEIGHT_BASED, na.rm = TRUE),
sum(computing_population$DOCUMENTED_WEIGHT, na.rm = TRUE),
sum(computing_population$CALL_911, na.rm = TRUE),
nrow(initial_population),
nrow(computing_population)
)
)
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# get the population of interest
pediatrics.03b.population <- list(
filter_process = filter_counts,
initial_population = initial_population,
computing_population = computing_population
)
# get the summary of results, already filtered down to the target age group for the measure
cli::cli_progress_done(id = progress_bar_population)
# summary
return(pediatrics.03b.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.