Nothing
#' @title Safety-04 Populations
#'
#' @description
#'
#' Filters data down to the target populations for Safety-04, and categorizes
#' records to identify needed information for the calculations.
#'
#' Identifies key categories related to a 911 request or interfacility request
#' for patients less than 8 years of age during which patients are transported
#' using a pediatric restraint device. This function segments the data by age
#' into adult and pediatric populations.
#'
#' @param df A data frame or tibble containing EMS data where each row
#' represents an individual observation.
#' @param patient_scene_table A data frame or tibble containing fields from
#' epatient and escene needed for this measure's calculations.
#' @param response_table A data frame or tibble containing fields from eresponse
#' needed for this measure's calculations.
#' @param arrest_table A data frame or tibble containing fields from earrest
#' needed for this measure's calculations.
#' @param injury_table A data frame or tibble containing fields from einjury
#' needed for this measure's calculations.
#' @param procedures_table A data frame or tibble containing fields from
#' eprocedures needed for this measure's calculations.
#' @param disposition_table A data frame or tibble containing fields from
#' edisposition needed for this measure's calculations.
#' @param erecord_01_col The column containing unique record identifiers for
#' each encounter.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col Column name indicating the patient age.
#' @param epatient_16_col Column name for the unit of age (e.g., "Years,"
#' "Months").
#' @param eresponse_05_col Column containing response transport codes.
#' @param earrest_01_col Column with cardiac arrest status information.
#' @param einjury_03_col Column describing traumatic injuries, expected as a
#' list or text-separated entries.
#' @param eprocedures_03_col Column listing procedures, assumed to contain
#' multiple procedure codes/texts in each cell.
#' @param edisposition_14_col Column for transport dispositions.
#' @param transport_disposition_col Columns for primary and secondary transport
#' dispositions.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # create tables to test correct functioning
#'
#' # patient table
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' incident_date = as.Date(c("2025-01-01", "2025-01-05",
#' "2025-02-01", "2025-01-01",
#' "2025-06-01")
#' ),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01",
#' "2023-02-01", "2023-01-01",
#' "1970-06-01")
#' ),
#' epatient_15 = c(25, 5, 2, 2, 55), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Years", "Years")
#'
#' )
#'
#' # response table
#' response_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eresponse_05 = rep(2205001, 5)
#'
#' )
#'
#' # disposition table
#' disposition_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' edisposition_14 = rep(4214001, 5),
#' edisposition_30 = rep(4230001, 5),
#' )
#'
#' # arrest table
#' arrest_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' earrest_01 = rep("No", 5)
#' )
#'
#' # injury table
#' injury_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' einjury_03 = rep("non-injury", 5)
#' )
#'
#' # procedures table
#' procedures_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eprocedures_03 = rep("other response", 5)
#' )
#'
#' # test the success of the function
#' result <- safety_04_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' arrest_table = arrest_table,
#' injury_table = injury_table,
#' procedures_table = procedures_table,
#' disposition_table = disposition_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' earrest_01_col = earrest_01,
#' einjury_03_col = einjury_03,
#' edisposition_14_col = edisposition_14,
#' transport_disposition_col = edisposition_30,
#' eprocedures_03_col = eprocedures_03
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
safety_04_population <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
arrest_table = NULL,
injury_table = NULL,
procedures_table = NULL,
disposition_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
earrest_01_col,
einjury_03_col,
eprocedures_03_col,
edisposition_14_col,
transport_disposition_col
) {
# ensure that not all table arguments AND the df argument are fulfilled
# user only passes df or all table arguments
if(
any(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(arrest_table),
!is.null(injury_table),
!is.null(procedures_table),
!is.null(disposition_table)
)
&&
!is.null(df)
) {
cli::cli_abort("{.fn safety_04_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# ensure that df or all table arguments are fulfilled
if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(arrest_table),
is.null(injury_table),
is.null(procedures_table),
is.null(disposition_table)
)
&& is.null(df)
) {
cli::cli_abort("{.fn safety_04_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments.")
}
# ensure all *_col arguments are fulfilled
if(
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(eresponse_05_col),
missing(earrest_01_col),
missing(einjury_03_col),
missing(eprocedures_03_col),
missing(edisposition_14_col),
missing(transport_disposition_col)
)
) {
cli::cli_abort("One or more of the *_col arguments is missing. Please make sure you pass an unquoted column to each of the *_col arguments to run {.fn safety_04_population}.")
}
# Filter incident data for 911 response codes and the corresponding primary/secondary impressions
# transport code eresponse.05
transport_code <- "2205005|Interfacility Transport"
# define transports
transport_responses <- "Transport by This EMS Unit \\(This Crew Only\\)|Transport by This EMS Unit, with a Member of Another Crew|Transport by Another EMS Unit, with a Member of This Crew|Patient Treated, Transported by this EMS Unit|Patient Treated, Transported with this EMS Crew in Another Vehicle|Treat / Transport ALS by this unit|Treat / Transport BLS by this unit|Mutual Aid Tx & Transport|4212033|4230001|4230003|4230007|itDisposition\\.112\\.116|it4212\\.142|itDisposition\\.112\\.165|itDisposition\\.112\\.141|Treat / Transport BLS by this unit|itDisposition\\.112\\.142"
# get codes as a regex to find cardiac arrest responses
cardiac_arrest_responses <- "3001005|3001003|Yes, Prior to Any EMS Arrival \\(includes Transport EMS & Medical First Responders\\)|Yes, After Any EMS Arrival \\(includes Transport EMS & Medical First Responders\\)"
# get applicable trauma triage codes for steps 1 and 2
trauma_triage_crit <- "2903001|Amputation proximal to wrist or ankle|2903003|Crushed, degloved, mangled, or pulseless extremity|2903005|Chest wall instability or deformity|2903007|Glasgow Coma Score <=13|2903009|Open or depressed skull fracture|2903011|Paralysis|2903013|Pelvic fractures|2903015|All penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee|2903017|Respiratory Rate <10 or >29 breaths per minute \\(<20 in infants aged <1 year\\) or need for ventilatory support|3903019|Systolic Blood Pressure <90 mmHg|2903021|Two or more long-bone fractures"
# procedure exclusion related to long board
long_board <- "450591000124106|Immobilization using long board"
# additional procedures in the exclusion
airway_procedures <- "16883004|Endotracheal intubation, emergency procedure|182682004|Emergency laryngeal intubation|232674004|Orotracheal intubation|232678001|Orotracheal fiberoptic intubation|232682004|Nasotracheal fiberoptic intubation|232685002|Insertion of tracheostomy tube|304341005|Awake intubation|418613003|Tracheal intubation through a laryngeal mask airway|424979004|Laryngeal mask airway insertion|427753009|Insertion of esophageal tracheal double lumen supraglottic airway|429161001|Insertion of endotracheal tube using laryngoscope|450611000124|Insertion of Single Lumen Supraglottic Airway Device"
# car seat code for edisposition.14
car_seat <- "4214001|Car Seat"
# minor values
minor_values <- "days|hours|minutes|2516001|2516003|2516005"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
))
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `safety_04_population()`",
total = 13,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
progress_bar_population
# utilize applicable tables to analyze the data for the measure
if(
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(arrest_table),
!is.null(injury_table),
!is.null(procedures_table),
!is.null(disposition_table)
)
&& is.null(df)
) {
# Ensure all tables are of class `data.frame` or `tibble`
if (
!all(
is.data.frame(patient_scene_table) || tibble::is_tibble(patient_scene_table),
is.data.frame(response_table) || tibble::is_tibble(response_table),
is.data.frame(disposition_table) || tibble::is_tibble(disposition_table),
is.data.frame(arrest_table) || tibble::is_tibble(arrest_table),
is.data.frame(injury_table) || tibble::is_tibble(injury_table),
is.data.frame(procedures_table) || tibble::is_tibble(procedures_table)
)
) {
cli::cli_abort(
"One or more of the tables passed to {.fn safety_04_population} were not of class {.cls data.frame} nor {.cls tibble}. When passing multiple tables, all tables must be of class {.cls data.frame} or {.cls tibble}."
)
}
# Validate date columns if provided
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(patient_dob)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both were not of class {.cls Date} or a similar class. Please format these variables to class {.cls Date} or a similar class."
)
}
}
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_minor1 = {{ epatient_15_col}} <= 8 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} < 96 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor3 = {{ epatient_15_col}} <= 120 & grepl(pattern = minor_values, x = {{epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2 | system_age_minor3,
# calculated age check
calc_age_minor = patient_age_in_years <= 8
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_minor1 = {{ epatient_15_col}} <= 8 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} < 96 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor3 = {{ epatient_15_col}} <= 120 & grepl(pattern = minor_values, x = {{epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2 | system_age_minor3
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# transports
transport_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# interfacility
interfacility_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::filter(
grepl(
pattern = transport_code,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# cardiac arrest
cardiac_arrest_data <- arrest_table |>
dplyr::select({{ erecord_01_col }}, {{ earrest_01_col }}) |>
dplyr::filter(
grepl(pattern = cardiac_arrest_responses, x = {{ earrest_01_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# severe injury
severe_injury_data <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = trauma_triage_crit, x = {{ einjury_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# long board
long_board_data <- procedures_table |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = long_board, x = {{ eprocedures_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# airway procedure
airway_proc_data <- procedures_table |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = airway_procedures, x = {{ eprocedures_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# car seat
car_seat_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_14_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = car_seat, x = {{ edisposition_14_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INTERFACILITY = {{ erecord_01_col }} %in% interfacility_data,
TRANSPORT_OR_INTERFACILITY = TRANSPORT | INTERFACILITY,
CARDIAC_ARREST = {{ erecord_01_col }} %in% cardiac_arrest_data,
SEVERE_INJURY = {{ erecord_01_col }} %in% severe_injury_data,
LONG_BOARD = {{ erecord_01_col }} %in% long_board_data,
AIRWAY_PROCEDURE = {{ erecord_01_col }} %in% airway_proc_data,
CAR_SEAT = {{ erecord_01_col }} %in% car_seat_data
)
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# filter down to age < 8 years
system_age_minor | calc_age_minor,
# NEMSIS 3.5 transports / interfacility only
TRANSPORT_OR_INTERFACILITY
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# filter down to age < 8 years
system_age_minor,
# NEMSIS 3.5 transports / interfacility only
TRANSPORT_OR_INTERFACILITY
)
}
# Only calculate for pediatric patients < 8 yrs of age
cli::cli_progress_update(set = 11, id = progress_bar_population, force = TRUE)
# filter peds for the exclusion criteria
peds_pop <- initial_population |>
dplyr::filter(!CARDIAC_ARREST &
!SEVERE_INJURY &
!LONG_BOARD &
!AIRWAY_PROCEDURE
)
# get the summary of results
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("Transport runs",
"Interfacility runs",
"Cardiac arrest calls",
"Severe injury calls",
"Calls involving long board",
"Calls involving an airway procedure",
"Car seat used",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INTERFACILITY, na.rm = TRUE),
sum(computing_population$CARDIAC_ARREST, na.rm = TRUE),
sum(computing_population$SEVERE_INJURY, na.rm = TRUE),
sum(computing_population$LONG_BOARD, na.rm = TRUE),
sum(computing_population$AIRWAY_PROCEDURE, na.rm = TRUE),
sum(computing_population$CAR_SEAT, na.rm = TRUE),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 13, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
safety.04.population <- list(
filter_process = filter_counts,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(safety.04.population)
} else if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(arrest_table),
is.null(injury_table),
is.null(procedures_table),
is.null(disposition_table)
)
&& !is.null(df)
) {
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# Validate date columns if provided
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both were not of class {.cls Date} or a similar class. Please format these variables to class {.cls Date} or a similar class."
)
}
}
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ earrest_01_col }},
{{ einjury_03_col }},
{{ eprocedures_03_col }},
{{ edisposition_14_col }},
{{ transport_disposition_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_minor1 = {{ epatient_15_col}} <= 8 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} < 96 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor3 = {{ epatient_15_col}} <= 120 & grepl(pattern = minor_values, x = {{epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2 | system_age_minor3,
# calculated age check
calc_age_minor = patient_age_in_years <= 8
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- df |>
dplyr::select(-c({{ eresponse_05_col }},
{{ earrest_01_col }},
{{ einjury_03_col }},
{{ eprocedures_03_col }},
{{ edisposition_14_col }},
{{ transport_disposition_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_minor1 = {{ epatient_15_col}} <= 8 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col}} < 96 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor3 = {{ epatient_15_col}} <= 120 & grepl(pattern = minor_values, x = {{epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2 | system_age_minor3
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# transports
transport_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# interfacility
interfacility_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::filter(
grepl(
pattern = transport_code,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# cardiac arrest
cardiac_arrest_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ earrest_01_col }}) |>
dplyr::filter(
grepl(pattern = cardiac_arrest_responses, x = {{ earrest_01_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# severe injury
severe_injury_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = trauma_triage_crit, x = {{ einjury_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# long board
long_board_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = long_board, x = {{ eprocedures_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# airway procedure
airway_proc_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = airway_procedures, x = {{ eprocedures_03_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# car seat
car_seat_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_14_col }}) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::filter(
grepl(pattern = car_seat, x = {{ edisposition_14_col }}, ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INTERFACILITY = {{ erecord_01_col }} %in% interfacility_data,
TRANSPORT_OR_INTERFACILITY = TRANSPORT | INTERFACILITY,
CARDIAC_ARREST = {{ erecord_01_col }} %in% cardiac_arrest_data,
SEVERE_INJURY = {{ erecord_01_col }} %in% severe_injury_data,
LONG_BOARD = {{ erecord_01_col }} %in% long_board_data,
AIRWAY_PROCEDURE = {{ erecord_01_col }} %in% airway_proc_data,
CAR_SEAT = {{ erecord_01_col }} %in% car_seat_data
)
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# filter down to age < 8 years
system_age_minor | calc_age_minor,
# NEMSIS 3.5 transports / interfacility only
TRANSPORT_OR_INTERFACILITY
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# filter down to age < 8 years
system_age_minor,
# NEMSIS 3.5 transports / interfacility only
TRANSPORT_OR_INTERFACILITY
)
}
# Only calculate for pediatric patients < 8 yrs of age
cli::cli_progress_update(set = 11, id = progress_bar_population, force = TRUE)
# filter peds for the exclusion criteria
peds_pop <- initial_population |>
dplyr::filter(!CARDIAC_ARREST &
!SEVERE_INJURY &
!LONG_BOARD &
!AIRWAY_PROCEDURE
)
# get the summary of results
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("Transport runs",
"Interfacility runs",
"Cardiac arrest calls",
"Severe injury calls",
"Calls involving long board",
"Calls involving an airway procedure",
"Car seat used",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INTERFACILITY, na.rm = TRUE),
sum(computing_population$CARDIAC_ARREST, na.rm = TRUE),
sum(computing_population$SEVERE_INJURY, na.rm = TRUE),
sum(computing_population$LONG_BOARD, na.rm = TRUE),
sum(computing_population$AIRWAY_PROCEDURE, na.rm = TRUE),
sum(computing_population$CAR_SEAT, na.rm = TRUE),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 13, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
safety.04.population <- list(
filter_process = filter_counts,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(safety.04.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.