Nothing
#' @title Trauma-01 Population
#'
#' @description
#'
#' Filters data down to the target populations for Trauma-08, and categorizes
#' records to identify needed information for the calculations.
#'
#' Identifies key categories to records that are 911 requests for patients with
#' injury who were assessed for pain based on specific criteria and calculates
#' related ECG measures. This function segments the data by age into adult and
#' pediatric populations.
#'
#' @param df A data frame or tibble containing EMS records. Default is `NULL`.
#' @param patient_scene_table A data frame or tibble containing only epatient
#' and escene fields as a fact table. Default is `NULL`.
#' @param response_table A data frame or tibble containing only the eresponse
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param situation_table A data.frame or tibble containing only the esituation
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param disposition_table A data.frame or tibble containing only the
#' edisposition fields needed for this measure's calculations. Default is
#' `NULL`.
#' @param vitals_table A data.frame or tibble containing only the evitals fields
#' needed for this measure's calculations. Default is `NULL`.
#' @param erecord_01_col Column name representing the EMS record ID.
#' @param incident_date_col Column name for the incident date. Default is
#' `NULL`.
#' @param patient_DOB_col Column name for the patient's date of birth. Default
#' is `NULL`.
#' @param epatient_15_col Column name for the patient's age in numeric format.
#' @param epatient_16_col Column name for the unit of age (e.g., "Years",
#' "Months").
#' @param esituation_02_col Column name indicating if the situation involved an
#' injury.
#' @param eresponse_05_col Column name for the type of EMS response (e.g., 911
#' call).
#' @param evitals_23_col Column name for the Glasgow Coma Scale (GCS) total
#' score.
#' @param evitals_26_col Column name for AVPU (Alert, Voice, Pain, Unresponsive)
#' status.
#' @param evitals_27_col Column name for the pain scale assessment.
#' @param edisposition_28_col Column name for patient care disposition details.
#' @param transport_disposition_col Column name for transport disposition
#' details.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # create tables to test correct functioning
#'
#' # patient table
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' incident_date = as.Date(c("2025-01-01", "2025-01-05",
#' "2025-02-01", "2025-01-01",
#' "2025-06-01")
#' ),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01",
#' "2023-02-01", "2023-01-01",
#' "1970-06-01")
#' ),
#' epatient_15 = c(25, 5, 2, 2, 55), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Years", "Years")
#'
#' )
#'
#' # response table
#' response_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eresponse_05 = rep(2205001, 5)
#'
#' )
#'
#' # situation table
#' situation_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' esituation_02 = rep("Yes", 5),
#' )
#'
#' # vitals table
#' vitals_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' evitals_23 = rep(15, 5),
#' evitals_26 = rep("Alert", 5),
#' evitals_27 = c(0, 2, 4, 6, 8)
#' )
#'
#' # disposition table
#' disposition_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' edisposition_28 = rep(4228001, 5),
#' edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
#' )
#'
#' # test the success of the function
#' result <- trauma_01_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' situation_table = situation_table,
#' vitals_table = vitals_table,
#' disposition_table = disposition_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' esituation_02_col = esituation_02,
#' evitals_23_col = evitals_23,
#' evitals_26_col = evitals_26,
#' evitals_27_col = evitals_27,
#' edisposition_28_col = edisposition_28,
#' transport_disposition_col = edisposition_30
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
trauma_01_population <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
disposition_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
esituation_02_col,
eresponse_05_col,
evitals_23_col,
evitals_26_col,
evitals_27_col,
edisposition_28_col,
transport_disposition_col
) {
# Ensure that not all table arguments AND the df argument are fulfilled
# User must pass either `df` or all table arguments, but not both
if (
any(
!is.null(patient_scene_table),
!is.null(vitals_table),
!is.null(situation_table),
!is.null(disposition_table),
!is.null(response_table)
) &&
!is.null(df)
) {
cli::cli_abort("{.fn trauma_01_population} requires either a {.cls data.frame} or {.cls tibble} passed to the {.var df} argument, or all table arguments to be fulfilled. Please choose one approach.")
}
# Ensure that df or all table arguments are fulfilled
if (
all(
is.null(patient_scene_table),
is.null(vitals_table),
is.null(situation_table),
is.null(disposition_table),
is.null(response_table)
) &&
is.null(df)
) {
cli::cli_abort("{.fn trauma_01_population} requires either a {.cls data.frame} or {.cls tibble} passed to the {.var df} argument, or all table arguments to be fulfilled. Please choose one approach.")
}
# Ensure all *_col arguments are fulfilled
if (
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(esituation_02_col),
missing(eresponse_05_col),
missing(evitals_23_col),
missing(evitals_26_col),
missing(evitals_27_col),
missing(edisposition_28_col),
missing(transport_disposition_col)
)
) {
cli::cli_abort("One or more of the *_col arguments is missing. Please ensure you pass an unquoted column to each of the *_col arguments to run {.fn trauma_01_population}.")
}
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
))
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `trauma_01_population()`",
total = 14,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
progress_bar_population
# Create objects that are filter helpers throughout the function
# injury values
possible_injury <- "Yes|9922005"
# 911 codes for eresponse.05
codes_911 <- "2205001|2205003|2205009|Emergency Response \\(Primary Response Area\\)|Emergency Response \\(Intercept\\)|Emergency Response \\(Mutual Aid\\)"
# avpu not values
avpu_values <- "Alert|3326001"
# patient care provided
care_provided <- "4228001|Patient Evaluated and Care Provided"
# define transports
transport_responses <- "Transport by This EMS Unit \\(This Crew Only\\)|Transport by This EMS Unit, with a Member of Another Crew|Transport by Another EMS Unit, with a Member of This Crew|Patient Treated, Transported by this EMS Unit|Patient Treated, Transported with this EMS Crew in Another Vehicle|Treat / Transport ALS by this unit|Treat / Transport BLS by this unit|Mutual Aid Tx & Transport|4212033|4230001|4230003|4230007|itDisposition\\.112\\.116|it4212\\.142|itDisposition\\.112\\.165|itDisposition\\.112\\.141|Treat / Transport BLS by this unit|itDisposition\\.112\\.142"
# minor values
minor_values <- "days|2516001|hours|2516003|minutes|2516005|months|2516007"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# utilize applicable tables to analyze the data for the measure
if (
any(
!is.null(patient_scene_table),
!is.null(vitals_table),
!is.null(situation_table),
!is.null(disposition_table),
!is.null(response_table)
) &&
is.null(df)
) {
# Ensure all tables are of class `data.frame` or `tibble`
if (
!all(
is.data.frame(patient_scene_table) || tibble::is_tibble(patient_scene_table),
is.data.frame(vitals_table) || tibble::is_tibble(vitals_table),
is.data.frame(situation_table) || tibble::is_tibble(situation_table),
is.data.frame(response_table) || tibble::is_tibble(response_table),
is.data.frame(disposition_table) || tibble::is_tibble(disposition_table)
)
) {
cli::cli_abort(
"One or more of the tables passed to {.fn trauma_01_population} were not of class {.cls data.frame} nor {.cls tibble}. When passing multiple tables, all tables must be of class {.cls data.frame} or {.cls tibble}."
)
}
# Validate date columns if provided
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(patient_dob)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both were not of class {.cls Date} or a similar class. Please format these variables to class {.cls Date} or a similar class."
)
}
}
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
# progress update, these will be repeated throughout the script
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col }} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18 & patient_age_in_years_col >= 2
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col }} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# GCS
GCS_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_23_col }}) |>
dplyr::distinct() |>
dplyr::filter({{ evitals_23_col }} == 15) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# AVPU
AVPU_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_26_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = avpu_values,
x = {{ evitals_26_col }},
ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# possible injury
possible_injury_data <- situation_table |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = possible_injury, x = {{ esituation_02_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# patient care provided
patient_care_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_28_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = care_provided, x = {{ edisposition_28_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# transports
transport_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# pain scale
pain_scale_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_27_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ evitals_27_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
GCS = {{ erecord_01_col }} %in% GCS_data,
AVPU = {{ erecord_01_col }} %in% AVPU_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INJURY = {{ erecord_01_col }} %in% possible_injury_data,
PATIENT_CARE = {{ erecord_01_col }} %in% patient_care_data,
PAIN_SCALE = {{ erecord_01_col }} %in% pain_scale_data
)
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# injuries
INJURY,
# GCS = 15 or AVPU = alert
(GCS | AVPU),
# 911 calls
CALL_911,
# patient evaluated and care provided
PATIENT_CARE,
# transports
TRANSPORT
)
cli::cli_progress_update(set = 11, id = progress_bar_population, force = TRUE)
# Adult and Pediatric Populations
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult | calc_age_adult)
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(set = 13, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("911 calls",
"GCS is 15",
"AVPU is alert",
"Transports",
"Injury cases",
"Patient evaluated and care provided",
"Pain scale administered",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$GCS, na.rm = TRUE),
sum(computing_population$AVPU, na.rm = TRUE),
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INJURY, na.rm = TRUE),
sum(computing_population$PATIENT_CARE, na.rm = TRUE),
sum(computing_population$PAIN_SCALE, na.rm = TRUE),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 14, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
trauma.01.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.01.population)
} else if (
any(
is.null(patient_scene_table),
is.null(vitals_table),
is.null(situation_table),
is.null(disposition_table),
is.null(response_table)
) &&
!is.null(df)
# utilize a dataframe to analyze the data for the measure analytics
) {
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# only check the date columns if they are in fact passed
if(
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
)
{
# use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if ((!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or similar class."
)
}
}
# progress update, these will be repeated throughout the script
cli::cli_progress_update(set = 1, id = progress_bar_population, force = TRUE)
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- df |>
dplyr::select(-c({{ esituation_02_col }},
{{ eresponse_05_col }},
{{ evitals_23_col }},
{{ evitals_26_col }},
{{ evitals_27_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) / 365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col }} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18 & patient_age_in_years_col >= 2
)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
final_data <- df |>
dplyr::select(-c({{ esituation_02_col }},
{{ eresponse_05_col }},
{{ evitals_23_col }},
{{ evitals_26_col }},
{{ evitals_27_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }}
)) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor1 = ({{ epatient_15_col }} < 18 & {{ epatient_15_col }} >= 2) & grepl(pattern = year_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor2 = {{ epatient_15_col }} >= 24 & grepl(pattern = month_values, x = {{ epatient_16_col }}, ignore.case = TRUE),
system_age_minor = system_age_minor1 | system_age_minor2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(set = 2, id = progress_bar_population, force = TRUE)
# GCS
GCS_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_23_col }}) |>
dplyr::distinct() |>
dplyr::filter({{ evitals_23_col }} == 15) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 3, id = progress_bar_population, force = TRUE)
# AVPU
AVPU_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_26_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = avpu_values,
x = {{ evitals_26_col }},
ignore.case = TRUE)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 4, id = progress_bar_population, force = TRUE)
# possible injury
possible_injury_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = possible_injury, x = {{ esituation_02_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 5, id = progress_bar_population, force = TRUE)
# patient care provided
patient_care_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_28_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = care_provided, x = {{ edisposition_28_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 6, id = progress_bar_population, force = TRUE)
# 911 calls
call_911_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(pattern = codes_911, x = {{ eresponse_05_col }}, ignore.case = TRUE)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 7, id = progress_bar_population, force = TRUE)
# transports
transport_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 8, id = progress_bar_population, force = TRUE)
# pain scale
pain_scale_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_27_col }}) |>
dplyr::distinct() |>
dplyr::filter(
!is.na({{ evitals_27_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(set = 9, id = progress_bar_population, force = TRUE)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
GCS = {{ erecord_01_col }} %in% GCS_data,
AVPU = {{ erecord_01_col }} %in% AVPU_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INJURY = {{ erecord_01_col }} %in% possible_injury_data,
PATIENT_CARE = {{ erecord_01_col }} %in% patient_care_data,
PAIN_SCALE = {{ erecord_01_col }} %in% pain_scale_data
)
cli::cli_progress_update(set = 10, id = progress_bar_population, force = TRUE)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
# injuries
INJURY,
# GCS = 15 or AVPU = alert
(GCS | AVPU),
# 911 calls
CALL_911,
# patient evaluated and care provided
PATIENT_CARE,
# transports
TRANSPORT
)
cli::cli_progress_update(set = 11, id = progress_bar_population, force = TRUE)
# Adult and Pediatric Populations
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult | calc_age_adult)
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if(
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(set = 12, id = progress_bar_population, force = TRUE)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(set = 13, id = progress_bar_population, force = TRUE)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c("911 calls",
"GCS is 15",
"AVPU is alert",
"Transports",
"Injury cases",
"Patient evaluated and care provided",
"Pain scale administered",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$GCS, na.rm = TRUE),
sum(computing_population$AVPU, na.rm = TRUE),
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INJURY, na.rm = TRUE),
sum(computing_population$PATIENT_CARE, na.rm = TRUE),
sum(computing_population$PAIN_SCALE, na.rm = TRUE),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(set = 14, id = progress_bar_population, force = TRUE)
# gather data into a list for multi-use output
trauma.01.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.01.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.