Nothing
#' @title Trauma-03 Populations
#'
#' @description
#'
#' Filters data down to the target populations for Trauma-08, and categorizes
#' records to identify needed information for the calculations.
#'
#' Identifies key categories to records that are 911 request for patients whose
#' pain score was lowered during the EMS encounter. based on specific criteria
#' and calculates related ECG measures. This function segments the data by age
#' into adult and pediatric populations.
#'
#' @param df A data frame or tibble containing EMS data with all relevant
#' columns. Default is `NULL`.
#' @param patient_scene_table A data frame or tibble containing only epatient
#' and escene fields as a fact table. Default is `NULL`.
#' @param response_table A data frame or tibble containing only the eresponse
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param situation_table A data frame or tibble containing only the esituation
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param disposition_table A data frame or tibble containing only the
#' edisposition fields needed for this measure's calculations. Default is
#' `NULL`.
#' @param vitals_table A data frame or tibble containing only the evitals fields
#' needed for this measure's calculations. Default is `NULL`.
#' @param erecord_01_col The column representing the EMS record unique
#' identifier.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col The column for patient age numeric value.
#' @param epatient_16_col The column for patient age unit (e.g., "Years",
#' "Months").
#' @param esituation_02_col The column containing information on the presence of
#' injury.
#' @param eresponse_05_col The column representing the 911 response type.
#' @param evitals_01_col The column for the time of pain scale measurement.
#' @param evitals_27_col The column for the pain scale score. Default is `NULL`.
#' @param evitals_27_initial_col The column for the initial pain scale score.
#' Default is `NULL`.
#' @param evitals_27_last_col The column for the last pain scale score. Default
#' is `NULL`.
#' @param edisposition_28_col The column for patient care disposition details.
#' @param transport_disposition_col The column for patient transport
#' disposition.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # create tables to test correct functioning
#'
#' # patient table
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' incident_date = as.Date(c("2025-01-01", "2025-01-05",
#' "2025-02-01", "2025-01-01",
#' "2025-06-01")
#' ),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01",
#' "2023-02-01", "2023-01-01",
#' "1970-06-01")
#' ),
#' epatient_15 = c(25, 5, 2, 2, 55), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Years", "Years")
#'
#' )
#'
#' # response table
#' response_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eresponse_05 = rep(2205001, 5)
#'
#' )
#'
#' # situation table
#' situation_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' esituation_02 = rep("Yes", 5),
#' )
#'
#' # vitals table for a single pain scale column
#' vitals_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05
#' 18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01
#' 14:00:00"))
#' ) |>
#' tidyr::uncount(weights = 2) |> # Duplicate each row twice
#' # Assign pain scores
#' dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |>
#' dplyr::group_by(erecord_01) |>
#' dplyr::mutate(
#' # Lower score = later time
#' time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0),
#' evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
#' ) |>
#' dplyr::ungroup() |>
#' dplyr::select(-time_offset) # Remove temporary column
#'
#' # disposition table
#' disposition_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' edisposition_28 = rep(4228001, 5),
#' edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
#' )
#'
#' # test the success of the function
#' # use the single pain scale column
#' result <- trauma_03_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' situation_table = situation_table,
#' vitals_table = vitals_table,
#' disposition_table = disposition_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' esituation_02_col = esituation_02,
#' evitals_01_col = evitals_01,
#' evitals_27_initial_col = NULL,
#' evitals_27_last_col = NULL,
#' evitals_27_col = evitals_27,
#' edisposition_28_col = edisposition_28,
#' transport_disposition_col = edisposition_30
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
trauma_03_population <- function(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
disposition_table = NULL,
vitals_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
esituation_02_col,
eresponse_05_col,
evitals_01_col,
evitals_27_col = NULL,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
edisposition_28_col,
transport_disposition_col
) {
# Ensure that not all table arguments AND the df argument are fulfilled
# User must pass either `df` or all table arguments, but not both
if (
any(
!is.null(patient_scene_table),
!is.null(vitals_table),
!is.null(situation_table),
!is.null(disposition_table),
!is.null(response_table)
) &&
!is.null(df)
) {
cli::cli_abort(
"{.fn trauma_03_population} requires either a {.cls data.frame} or {.cls tibble} passed to the {.var df} argument, or all table arguments to be fulfilled. Please choose one approach."
)
}
# Ensure that df or all table arguments are fulfilled
if (
all(
is.null(patient_scene_table),
is.null(vitals_table),
is.null(situation_table),
is.null(disposition_table),
is.null(response_table)
) &&
is.null(df)
) {
cli::cli_abort(
"{.fn trauma_03_population} requires either a {.cls data.frame} or {.cls tibble} passed to the {.var df} argument, or all table arguments to be fulfilled. Please choose one approach."
)
}
# Ensure all *_col arguments are fulfilled
if (
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(esituation_02_col),
missing(eresponse_05_col),
missing(evitals_01_col),
missing(evitals_27_col),
missing(evitals_27_initial_col),
missing(evitals_27_last_col),
missing(edisposition_28_col),
missing(transport_disposition_col)
)
) {
cli::cli_abort(
"One or more of the *_col arguments is missing. Please ensure you pass an unquoted column to each of the *_col arguments to run {.fn trauma_03_population}."
)
}
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(
cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
)
)
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `trauma_03_population()`",
total = 17,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
progress_bar_population
# Create objects that are filter helpers throughout the function
# injury values
possible_injury <- "Yes|9922005"
# 911 codes for eresponse.05
codes_911 <- "2205001|2205003|2205009|Emergency Response \\(Primary Response Area\\)|Emergency Response \\(Intercept\\)|Emergency Response \\(Mutual Aid\\)"
# patient care provided
care_provided <- "4228001|Patient Evaluated and Care Provided"
# define transports
transport_responses <- "Transport by This EMS Unit \\(This Crew Only\\)|Transport by This EMS Unit, with a Member of Another Crew|Transport by Another EMS Unit, with a Member of This Crew|Patient Treated, Transported by this EMS Unit|Patient Treated, Transported with this EMS Crew in Another Vehicle|Treat / Transport ALS by this unit|Treat / Transport BLS by this unit|Mutual Aid Tx & Transport|4212033|4230001|4230003|4230007|itDisposition\\.112\\.116|it4212\\.142|itDisposition\\.112\\.165|itDisposition\\.112\\.141|Treat / Transport BLS by this unit|itDisposition\\.112\\.142"
# minor values
minor_values <- "days|2516001|hours|2516003|minutes|2516005|months|2516007"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# utilize applicable tables to analyze the data for the measure
if (
any(
!is.null(patient_scene_table),
!is.null(vitals_table),
!is.null(situation_table),
!is.null(disposition_table),
!is.null(response_table)
) &&
is.null(df)
) {
# Ensure all tables are of class `data.frame` or `tibble`
if (
!all(
is.data.frame(patient_scene_table) ||
tibble::is_tibble(patient_scene_table),
is.data.frame(vitals_table) || tibble::is_tibble(vitals_table),
is.data.frame(situation_table) || tibble::is_tibble(situation_table),
is.data.frame(response_table) || tibble::is_tibble(response_table),
is.data.frame(disposition_table) || tibble::is_tibble(disposition_table)
)
) {
cli::cli_abort(
"One or more of the tables passed to {.fn trauma_03_population} were not of class {.cls data.frame} nor {.cls tibble}. When passing multiple tables, all tables must be of class {.cls data.frame} or {.cls tibble}."
)
}
# Validate date columns if provided
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(
incident_date
)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(
incident_date
)]])) ||
(!lubridate::is.Date(patient_scene_table[[rlang::as_name(
patient_dob
)]]) &
!lubridate::is.POSIXct(patient_scene_table[[rlang::as_name(
patient_dob
)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both were not of class {.cls Date} or a similar class. Please format these variables to class {.cls Date} or a similar class."
)
}
}
# validate the vitals date-time column
vitals_date_time <- rlang::enquo(evitals_01_col)
if (
(!lubridate::is.Date(vitals_table[[rlang::as_name(vitals_date_time)]]) &
!lubridate::is.POSIXct(vitals_table[[rlang::as_name(
vitals_date_time
)]]))
) {
cli::cli_abort(
"{.var evitals_01_col} was not of class {.cls Date} or a similar class. Please format this variable to class {.cls Date} or a similar class."
)
}
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
# progress update, these will be repeated throughout the script
cli::cli_progress_update(
set = 1,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) /
365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18 &
patient_age_in_years_col >= 2
)
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(
set = 2,
id = progress_bar_population,
force = TRUE
)
# possible injury
possible_injury_data <- situation_table |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = possible_injury,
x = {{ esituation_02_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 3,
id = progress_bar_population,
force = TRUE
)
# patient care provided
patient_care_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_28_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = care_provided,
x = {{ edisposition_28_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 4,
id = progress_bar_population,
force = TRUE
)
# 911 calls
call_911_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = codes_911,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 5,
id = progress_bar_population,
force = TRUE
)
# transports
transport_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 6,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
# create a vitals table that has the initial and last pain scores
vitals_table_mutate <- vitals_table |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_27_initial_col }},
{{ evitals_27_last_col }},
{{ evitals_01_col }}
) |>
dplyr::distinct() |>
dplyr::group_by({{ erecord_01_col }}) |>
dplyr::mutate(
# Initial and last pain scale times
initial_pain_scale_time = dplyr::first(
{{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale_time = dplyr::last({{ evitals_01_col }}, na_rm = TRUE)
) |>
dplyr::ungroup() |>
dplyr::select(
{{ erecord_01_col }},
initial_pain_scale_time,
{{ evitals_27_initial_col }},
last_pain_scale_time,
{{ evitals_27_last_col }}
) |>
dplyr::distinct()
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# pain scale > 0 and corresponding vitals time not missing
pain_scale_time_data <- vitals_table_mutate |>
dplyr::filter(
{{ evitals_27_initial_col }} > 0,
!is.na(initial_pain_scale_time)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# pain scale change
pain_scale_data <- vitals_table_mutate |>
dplyr::filter(
dplyr::if_all(
c(initial_pain_scale_time, last_pain_scale_time),
~ !is.na(.)
) &
({{ evitals_27_last_col }} < {{ evitals_27_initial_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
} else if (
all(
rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
# create a vitals table that has the initial and last pain scores
vitals_table_mutate <- vitals_table |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_27_col }},
{{ evitals_01_col }}
) |>
dplyr::distinct() |>
dplyr::group_by({{ erecord_01_col }}) |>
dplyr::mutate(
# Initial and last pain scales
initial_pain_scale = dplyr::first(
{{ evitals_27_col }},
order_by = {{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale = dplyr::last(
{{ evitals_27_col }},
order_by = {{ evitals_01_col }},
na_rm = TRUE
),
# Initial and last pain scale times
initial_pain_scale_time = dplyr::first(
{{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale_time = dplyr::last({{ evitals_01_col }}, na_rm = TRUE)
) |>
dplyr::ungroup() |>
dplyr::select(
{{ erecord_01_col }},
initial_pain_scale_time,
initial_pain_scale,
last_pain_scale_time,
last_pain_scale
) |>
dplyr::distinct()
# pain scale > 0 and corresponding vitals time not missing
pain_scale_time_data <- vitals_table_mutate |>
dplyr::filter(
initial_pain_scale > 0,
!is.na(initial_pain_scale_time)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# pain scale change
pain_scale_data <- vitals_table_mutate |>
dplyr::filter(
dplyr::if_all(
c(initial_pain_scale_time, last_pain_scale_time),
~ !is.na(.)
) &
(last_pain_scale < initial_pain_scale)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
}
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
PAIN_SCALE_TIME = {{ erecord_01_col }} %in% pain_scale_time_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INJURY = {{ erecord_01_col }} %in% possible_injury_data,
PATIENT_CARE = {{ erecord_01_col }} %in% patient_care_data,
PAIN_SCALE = {{ erecord_01_col }} %in% pain_scale_data,
)
cli::cli_progress_update(
set = 9,
id = progress_bar_population,
force = TRUE
)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
INJURY,
PAIN_SCALE_TIME,
CALL_911,
PATIENT_CARE,
TRANSPORT
)
# Adult and Pediatric Populations
cli::cli_progress_update(
set = 10,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult | calc_age_adult)
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(
set = 12,
id = progress_bar_population,
force = TRUE
)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c(
"911 calls",
"Non-missing vital sign date-time with initial pain score > 0",
"Transports",
"Injury cases",
"Patient evaluated and care provided",
"Pain scale decreased",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$PAIN_SCALE_TIME, na.rm = TRUE),
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INJURY, na.rm = TRUE),
sum(computing_population$PATIENT_CARE, na.rm = TRUE),
sum(computing_population$PAIN_SCALE, na.rm = TRUE),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(
set = 13,
id = progress_bar_population,
force = TRUE
)
# gather data into a list for multi-use output
trauma.03.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.03.population)
} else if (
any(
is.null(patient_scene_table),
is.null(vitals_table),
is.null(situation_table),
is.null(disposition_table),
is.null(response_table)
) &&
!is.null(df)
# utilize a dataframe to analyze the data for the measure analytics
) {
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# Validate date columns if provided
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both were not of class {.cls Date} or a similar class. Please format these variables to class {.cls Date} or a similar class."
)
}
}
# validate the vitals date-time column
vitals_date_time <- rlang::enquo(evitals_01_col)
if (
(!lubridate::is.Date(df[[rlang::as_name(vitals_date_time)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(vitals_date_time)]]))
) {
cli::cli_abort(
"{.var evitals_01_col} was not of class {.cls Date} or a similar class. Please format this variable to class {.cls Date} or a similar class."
)
}
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
# progress update, these will be repeated throughout the script
cli::cli_progress_update(
set = 1,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
if (
all(
!rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }},
{{ evitals_27_initial_col }},
{{ evitals_27_last_col }},
{{ evitals_01_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) /
365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18 &
patient_age_in_years_col >= 2
)
} else if (
all(
rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }},
{{ evitals_27_col }},
{{ evitals_01_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) /
365,
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2,
# calculated age check
calc_age_adult = patient_age_in_years_col >= 18,
calc_age_minor = patient_age_in_years_col < 18 &
patient_age_in_years_col >= 2
)
}
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
if (
all(
!rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }},
{{ evitals_27_initial_col }},
{{ evitals_27_last_col }},
{{ evitals_01_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2
)
} else if (
all(
rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ edisposition_28_col }},
{{ transport_disposition_col }},
{{ evitals_27_col }},
{{ evitals_01_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_adult = {{ epatient_15_col }} >= 18 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor1 = ({{ epatient_15_col }} < 18 &
{{ epatient_15_col }} >= 2) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor2 = {{ epatient_15_col }} >= 24 &
grepl(
pattern = month_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_minor = system_age_minor1 | system_age_minor2
)
}
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(
set = 2,
id = progress_bar_population,
force = TRUE
)
# possible injury
possible_injury_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = possible_injury,
x = {{ esituation_02_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 3,
id = progress_bar_population,
force = TRUE
)
# patient care provided
patient_care_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_28_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = care_provided,
x = {{ edisposition_28_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 4,
id = progress_bar_population,
force = TRUE
)
# 911 calls
call_911_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = codes_911,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 5,
id = progress_bar_population,
force = TRUE
)
# transports
transport_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 6,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
# create a vitals table that has the initial and last pain scores
vitals_table_mutate <- df |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_27_initial_col }},
{{ evitals_27_last_col }},
{{ evitals_01_col }}
) |>
dplyr::distinct() |>
dplyr::group_by({{ erecord_01_col }}) |>
dplyr::mutate(
# Initial and last pain scale times
initial_pain_scale_time = dplyr::first(
{{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale_time = dplyr::last({{ evitals_01_col }}, na_rm = TRUE)
) |>
dplyr::ungroup() |>
dplyr::select(
{{ erecord_01_col }},
initial_pain_scale_time,
{{ evitals_27_initial_col }},
last_pain_scale_time,
{{ evitals_27_last_col }}
) |>
dplyr::distinct()
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# pain scale > 0 and corresponding vitals time not missing
pain_scale_time_data <- vitals_table_mutate |>
dplyr::filter(
{{ evitals_27_initial_col }} > 0,
!is.na(initial_pain_scale_time)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# pain scale change
pain_scale_data <- vitals_table_mutate |>
dplyr::filter(
dplyr::if_all(
c(initial_pain_scale_time, last_pain_scale_time),
~ !is.na(.)
) &
({{ evitals_27_last_col }} < {{ evitals_27_initial_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
} else if (
all(
rlang::quo_is_null(rlang::enquo(evitals_27_initial_col)),
rlang::quo_is_null(rlang::enquo(evitals_27_last_col)),
!rlang::quo_is_null(rlang::enquo(evitals_27_col))
)
) {
# create a vitals table that has the initial and last pain scores
vitals_table_mutate <- df |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_27_col }},
{{ evitals_01_col }}
) |>
dplyr::distinct() |>
dplyr::group_by({{ erecord_01_col }}) |>
dplyr::mutate(
# Initial and last pain scales
initial_pain_scale = dplyr::first(
{{ evitals_27_col }},
order_by = {{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale = dplyr::last(
{{ evitals_27_col }},
order_by = {{ evitals_01_col }},
na_rm = TRUE
),
# Initial and last pain scale times
initial_pain_scale_time = dplyr::first(
{{ evitals_01_col }},
na_rm = TRUE
),
last_pain_scale_time = dplyr::last({{ evitals_01_col }}, na_rm = TRUE)
) |>
dplyr::ungroup() |>
dplyr::select(
{{ erecord_01_col }},
initial_pain_scale_time,
initial_pain_scale,
last_pain_scale_time,
last_pain_scale
) |>
dplyr::distinct()
# pain scale > 0 and corresponding vitals time not missing
pain_scale_time_data <- vitals_table_mutate |>
dplyr::filter(
initial_pain_scale > 0,
!is.na(initial_pain_scale_time)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# pain scale change
pain_scale_data <- vitals_table_mutate |>
dplyr::filter(
dplyr::if_all(
c(initial_pain_scale_time, last_pain_scale_time),
~ !is.na(.)
) &
(last_pain_scale < initial_pain_scale)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
}
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
PAIN_SCALE_TIME = {{ erecord_01_col }} %in% pain_scale_time_data,
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORT = {{ erecord_01_col }} %in% transport_data,
INJURY = {{ erecord_01_col }} %in% possible_injury_data,
PATIENT_CARE = {{ erecord_01_col }} %in% patient_care_data,
PAIN_SCALE = {{ erecord_01_col }} %in% pain_scale_data,
)
cli::cli_progress_update(
set = 9,
id = progress_bar_population,
force = TRUE
)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
INJURY,
PAIN_SCALE_TIME,
CALL_911,
PATIENT_CARE,
TRANSPORT
)
# Adult and Pediatric Populations
cli::cli_progress_update(
set = 10,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult | calc_age_adult)
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor | calc_age_minor)
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
# filter adult
adult_pop <- initial_population |>
dplyr::filter(system_age_adult)
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# filter peds
peds_pop <- initial_population |>
dplyr::filter(system_age_minor)
}
cli::cli_progress_update(
set = 12,
id = progress_bar_population,
force = TRUE
)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c(
"911 calls",
"Non-missing vital sign date-time with initial pain score > 0",
"Transports",
"Injury cases",
"Patient evaluated and care provided",
"Pain scale decreased",
"Adults denominator",
"Peds denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$PAIN_SCALE_TIME, na.rm = TRUE),
sum(computing_population$TRANSPORT, na.rm = TRUE),
sum(computing_population$INJURY, na.rm = TRUE),
sum(computing_population$PATIENT_CARE, na.rm = TRUE),
sum(computing_population$PAIN_SCALE, na.rm = TRUE),
nrow(adult_pop),
nrow(peds_pop),
nrow(initial_population),
nrow(computing_population)
)
)
# get the populations of interest
cli::cli_progress_update(
set = 13,
id = progress_bar_population,
force = TRUE
)
# gather data into a list for multi-use output
trauma.03.population <- list(
filter_process = filter_counts,
adults = adult_pop,
peds = peds_pop,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.03.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.