Nothing
#' @title Trauma-04 Populations
#'
#' @description
#'
#' This function processes EMS data to generate the population needed to
#' calculated the Trauma-04 NEMSQA measure.
#'
#' @param df A data frame or tibble containing EMS data with all relevant
#' columns.
#' @param patient_scene_table A data.frame or tibble containing only epatient
#' and escene fields as a fact table.
#' @param response_table A data.frame or tibble containing only the eresponse
#' fields needed for this measure's calculations.
#' @param situation_table A data.frame or tibble containing only the esituation
#' fields needed for this measure's calculations.
#' @param vitals_table A data.frame or tibble containing only the evitals fields
#' needed for this measure's calculations.
#' @param exam_table A data.frame or tibble containing only the eexam fields
#' needed for this measure's calculations.
#' @param procedures_table A data.frame or tibble containing only the
#' eprocedures fields needed for this measure's calculations.
#' @param injury_table A data.frame or tibble containing only the einjury fields
#' needed for this measure's calculations.
#' @param disposition_table A data.frame or tibble containing only the
#' edisposition fields needed for this measure's calculations.
#' @param erecord_01_col The column representing the EMS record unique
#' identifier.
#' @param incident_date_col The column indicating the incident date. Must be of
#' class `Date` or similar.
#' @param patient_DOB_col The column representing the patient's date of birth.
#' Must be of class `Date` or similar.
#' @param epatient_15_col The column for patient age numeric value.
#' @param epatient_16_col The column for patient age unit (e.g., "Years",
#' "Months").
#' @param esituation_02_col The column containing information on the presence of
#' injury.
#' @param eresponse_05_col The column representing the 911 response type.
#' @param eresponse_10_col Column name containing scene delay information.
#' @param transport_disposition_col The column for patient transport
#' disposition.
#' @param edisposition_23_col Column name containing trauma hospital
#' verification information.
#' @param evitals_06_col Column name containing systolic blood pressure (SBP)
#' values.
#' @param evitals_10_col Column name containing heart rate values.
#' @param evitals_12_col Column name containing pulse oximetry values.
#' @param evitals_14_col Column name containing capillary refill information.
#' @param evitals_15_col Column name containing respiratory effort values.
#' @param evitals_21_col Column name containing Glasgow Coma Scale (GCS) Motor
#' values.
#' @param eexam_16_col Column name containing extremities assessment details.
#' @param eexam_20_col Column name containing neurological assessment details.
#' @param eexam_23_col Column name containing lung assessment details.
#' @param eexam_25_col Column name containing chest assessment details.
#' @param eprocedures_03_col Column name containing airway management or
#' tourniquet usage details.
#' @param einjury_01_col Column name containing injury cause details.
#' @param einjury_03_col Column name containing trauma triage steps 1 and 2
#' information.
#' @param einjury_04_col Column name containing trauma triage steps 3 and 4
#' information.
#' @param einjury_09_col Column name containing fall height information.
#'
#' @return A list that contains the following:
#' * a tibble with counts for each filtering step,
#' * a tibble for each population of interest
#' * a tibble for the initial population
#' * a tibble for the total dataset with computations
#'
#' @examples
#'
#' # create tables to test correct functioning
#'
#' # patient table
#' patient_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' incident_date = as.Date(c("2025-01-01", "2025-01-05",
#' "2025-02-01", "2025-01-01",
#' "2025-06-01")
#' ),
#' patient_dob = as.Date(c("2000-01-01", "2020-01-01",
#' "2023-02-01", "2023-01-01",
#' "1970-06-01")
#' ),
#' epatient_15 = c(25, 5, 2, 2, 55), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Years", "Years")
#'
#' )
#'
#' # response table
#' response_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eresponse_05 = rep(2205001, 5),
#' eresponse_10 = rep(2210011, 5)
#' )
#'
#' # situation table
#' situation_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' esituation_02 = rep("Yes", 5),
#' )
#'
#' # vitals table
#' vitals_table <- tibble::tibble(
#'
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' evitals_06 = c(100, 90, 80, 70, 85),
#' evitals_10 = c(110, 89, 88, 71, 85),
#' evitals_12 = c(50, 60, 70, 80, 75),
#' evitals_14 = c(30, 9, 8, 7, 31),
#' evitals_15 = c("apneic", "labored", "rapid", "shallow", "weak/agonal"),
#' evitals_21 = c(5, 4, 3, 2, 1)
#' )
#'
#' # disposition table
#' disposition_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' edisposition_23 = c(9908029, 9908027, 9908025, 9908023, 9908021),
#' edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
#' )
#'
#' # injury table
#' injury_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' einjury_01 = c("V20", "V36", "V86", "V39", "V32"),
#' einjury_03 = c(2903011, 2903009, 2903005, 3903003, 2903001),
#' einjury_04 = c(2904013, 2904011, 2904009, 2904007, 2904001),
#' einjury_09 = c(11, 12, 13, 14, 15)
#' )
#'
#' # exam table
#' exam_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eexam_16 = c(3516043, 3516067, 3516043, 3516067, 3516067),
#' eexam_20 = c(3520045, 3520043, 3520019, 3520017, 3520017),
#' eexam_23 = c(3523011, 3523003, 3523001, 3523011, 3523003),
#' eexam_25 = c(3525039, 3525023, 3525005, 3525039, 3525023)
#' )
#'
#' # procedures table
#' procedures_table <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' eprocedures_03 = c(424979004, 427753009, 429705000, 47545007, 243142003)
#' )
#'
#' # test the success of the function
#' result <- trauma_04_population(patient_scene_table = patient_table,
#' response_table = response_table,
#' situation_table = situation_table,
#' vitals_table = vitals_table,
#' disposition_table = disposition_table,
#' exam_table = exam_table,
#' injury_table = injury_table,
#' procedures_table = procedures_table,
#' erecord_01_col = erecord_01,
#' incident_date_col = incident_date,
#' patient_DOB_col = patient_dob,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' eresponse_10_col = eresponse_10,
#' esituation_02_col = esituation_02,
#' evitals_06_col = evitals_06,
#' evitals_10_col = evitals_10,
#' evitals_12_col = evitals_12,
#' evitals_14_col = evitals_14,
#' evitals_15_col = evitals_15,
#' evitals_21_col = evitals_21,
#' eexam_16_col = eexam_16,
#' eexam_20_col = eexam_20,
#' eexam_23_col = eexam_23,
#' eexam_25_col = eexam_25,
#' edisposition_23_col = edisposition_23,
#' transport_disposition_col = edisposition_30,
#' eprocedures_03_col = eprocedures_03,
#' einjury_01_col = einjury_01,
#' einjury_03_col = einjury_03,
#' einjury_04_col = einjury_04,
#' einjury_09_col = einjury_09
#' )
#'
#' # show the results of filtering at each step
#' result$filter_process
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
trauma_04_population <- function(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
exam_table = NULL,
procedures_table = NULL,
injury_table = NULL,
disposition_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
esituation_02_col,
eresponse_05_col,
eresponse_10_col,
transport_disposition_col,
edisposition_23_col,
evitals_06_col,
evitals_10_col,
evitals_12_col,
evitals_14_col,
evitals_15_col,
evitals_21_col,
eexam_16_col,
eexam_20_col,
eexam_23_col,
eexam_25_col,
eprocedures_03_col,
einjury_01_col,
einjury_03_col,
einjury_04_col,
einjury_09_col
) {
# ensure that not all table arguments AND the df argument are fulfilled
# user only passes df or all table arguments
if (
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(situation_table),
!is.null(vitals_table),
!is.null(procedures_table),
!is.null(exam_table),
!is.null(injury_table),
!is.null(disposition_table)
) &&
!is.null(df)
) {
cli::cli_abort(
"{.fn trauma_04_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments."
)
}
# ensure that df or all table arguments are fulfilled
if (
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(situation_table),
is.null(vitals_table),
is.null(procedures_table),
is.null(exam_table),
is.null(injury_table),
is.null(disposition_table)
) &&
is.null(df)
) {
cli::cli_abort(
"{.fn trauma_04_population} will only work by passing a {.cls data.frame} or {.cls tibble} to the {.var df} argument, or by fulfilling all table arguments. Please choose to either pass an object of class {.cls data.frame} or {.cls tibble} to the {.var df} argument, or fulfill all table arguments."
)
}
# ensure all *_col arguments are fulfilled
if (
any(
missing(erecord_01_col),
missing(incident_date_col),
missing(patient_DOB_col),
missing(epatient_15_col),
missing(epatient_16_col),
missing(esituation_02_col),
missing(eresponse_05_col),
missing(eresponse_10_col),
missing(transport_disposition_col),
missing(edisposition_23_col),
missing(evitals_06_col),
missing(evitals_10_col),
missing(evitals_12_col),
missing(evitals_14_col),
missing(evitals_15_col),
missing(evitals_21_col),
missing(eexam_16_col),
missing(eexam_20_col),
missing(eexam_23_col),
missing(eexam_25_col),
missing(eprocedures_03_col),
missing(einjury_01_col),
missing(einjury_03_col),
missing(einjury_04_col),
missing(einjury_09_col)
)
) {
cli::cli_abort(
"One or more of the *_col arguments is missing. Please make sure you pass an unquoted column to each of the *_col arguments to run {.fn trauma_04_population}."
)
}
# options for the progress bar
# a green dot for progress
# a white line for note done yet
options(cli.progress_bar_style = "dot")
options(
cli.progress_bar_style = list(
complete = cli::col_green("\u25CF"), # Black Circle
incomplete = cli::col_br_white("\u2500") # Light Horizontal Line
)
)
# initiate the progress bar process
progress_bar_population <- cli::cli_progress_bar(
"Running `trauma_04_population()`",
total = 31,
type = "tasks",
clear = F,
format = "{cli::pb_name} [Working on {cli::pb_current} of {cli::pb_total} tasks] {cli::pb_bar} | {cli::col_blue('Progress')}: {cli::pb_percent} | {cli::col_blue('Runtime')}: [{cli::pb_elapsed}]"
)
# Create objects that are filter helpers throughout the function
# injury values
possible_injury <- "Yes|9922005"
# 911 codes for eresponse.05
codes_911 <- "2205001|2205003|2205009|Emergency Response \\(Primary Response Area\\)|Emergency Response \\(Intercept\\)|Emergency Response \\(Mutual Aid\\)"
# define transports
transport_responses <- "Transport by This EMS Unit \\(This Crew Only\\)|Transport by This EMS Unit, with a Member of Another Crew|Transport by Another EMS Unit, with a Member of This Crew|Patient Treated, Transported by this EMS Unit|Patient Treated, Transported with this EMS Crew in Another Vehicle|Treat / Transport ALS by this unit|Treat / Transport BLS by this unit|Mutual Aid Tx & Transport|4212033|4230001|4230003|4230007|itDisposition\\.112\\.116|it4212\\.142|itDisposition\\.112\\.165|itDisposition\\.112\\.141|Treat / Transport BLS by this unit|itDisposition\\.112\\.142"
# GCS motor values
GCS_motor_values <- "no motor response|extension to pain|flexion to pain|withdrawal from pain|localizing pain|5|4|3|2|1"
# lung assessment values
lung_assessment_values <- "Breath Sounds-Absent|Breath Sounds-Decreased|Increased Respiratory Effort|3523001|3523003|3523011"
# chest assessment values
chest_assessment_values <- "3525005|Accessory Muscles Used with Breathing|3525023|Flail Segment|3525039|Retraction"
# respiratory effort values
respiratory_effort_values <- "Apneic|Labored|Mechanically Assisted|Rapid|Shallow|Weak/Agonal|3315001|3315003|3315005|3315009|3315011|3315013"
# airway management values
airway_management_values <- "243142003|Dual pressure spontaneous ventilation support|47545007|Continuous positive airway pressure ventilation treatment|429705000|Insertion of esophageal tracheal combitube|427753009|Insertion of esophageal tracheal double lumen supraglottic airway|424979004|Laryngeal mask airway insertion|23674004|Orotracheal intubation|450601000124103|Orotracheal intubation using bougie device|241689008|Rapid sequence induction|450611000124100|Insertion of single lumen supraglottic airway device"
# trauma triage criteria values for 65+ age group
trauma_triage_1_2_values_65 <- "2903001|Amputation proximal to wrist or ankle|3903003|Crushed, degloved, mangled, or pulseless extremity|2903005|Chest wall instability or deformity|2903009|Open or depressed skull fracture|2903011|Paralysis|3903013|Pelvic fractures|2903015|All Penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee|2903017|Respiratory Rate <10 or >29 breaths per minute \\(<20 in infants aged <1\\) or need for ventilatory support|3903021|Two or more proximal long-bone fractures"
# trauma triage criteria values
trauma_triage_1_2_values_10_64 <- "2903001|Amputation proximal to wrist or ankle|3903003|Crushed, degloved, mangled, or pulseless extremity|2903005|Chest wall instability or deformity|2903009|Open or depressed skull fracture|2903011|Paralysis|3903013|Pelvic fractures|2903015|All Penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee|2903017|Respiratory Rate <10 or >29 breaths per minute \\(<20 in infants aged <1\\) or need for ventilatory support|3903021|Two or more proximal long-bone fractures|2903019|Systolic Blood Pressure <90 mmHg"
# trauma triage criteria values for < 10 age group
trauma_triage_1_2_values_10 <- "2903001|Amputation proximal to wrist or ankle|3903003|Crushed, degloved, mangled, or pulseless extremity|2903005|Chest wall instability or deformity|2903009|Open or depressed skull fracture|2903011|Paralysis|3903013|Pelvic fractures|2903015|All Penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee|3903021|Two or more proximal long-bone fractures"
# extremities assessment values
extremities_assessment_values <- "3516043|Motor Function-Abnormal/Weakness|3516067|Sensation-Absent"
# neurological assessment values
neurological_assessment_values <- "3520017|Hemiplegia-Left|3520019|Hemiplegia-Right|3520043|Weakness-Left Sided|3520045|Weakness-Right Sided"
# procedures values
tourniquet_values <- "20655006|Application of tourniquet|24173005|Tourniquet procedure|241731009|Tourniquet positioning|241733007|Tourniquet cuff inflation|241734001|Upper tourniquet cuff inflation|241735000|Lower tourniquet cuff inflation|241736004|Manual tourniquet application|398260007|Tourniquet positioned on patient|447686008|Application of pressure to wound"
# trauma triage criteria (steps 3 and 4) values
trauma_triage_3_4_values <- "2904001|Auto v\\. Pedestrian/Bicyclist Thrown, Run Over, or >20 MPH Accident|2904007|Crash Death in Same Passenger Compartment|2904009|Crash Ejection \\(partial or complete\\) from automobile|2904011|Crash Intrusion, Including roof: > 12 in\\. occupant site; > 18 in\\. any site|2904013|Crash Vehicle Telemetry Data \\(AACN\\) Consistent with High Risk of Injury"
# type of scene delay values
scene_delay_values <- "2210011|Extrication"
# cause of injury matches values
cause_of_injury_values <- "(?:V20|V21|V22|V23|V24|V25|V26|V27|V28|V29|V30|V31|V32|V33|V34|V35|V36|V37|V38|V39|V80|V86)|Motorcycle rider injured in collision with pedestrian or animal|Motorcycle rider injured in collision with pedal cycle|Motorcycle rider injured in collision with two- or three- wheeled motor vehicle|Motorcycle rider injured in collision with car, pick-up truck or van|Motorcycle rider injured in collision with heavy transport vehicle or bus|Motorcycle rider injured in collision with railway train or railway vehicle|Motorcycle rider injured in collision with other nonmotor vehicle|Motorcycle rider injured in collision with fixed or stationary object|Motorcycle rider injured in noncollision transport accident|Motorcycle rider injured in other and unspecified transport accidents|Occupant of three-wheeled motor vehicle injured in collision with pedestrian or animal|Occupant of three-wheeled motor vehicle injured in collision with pedal cycle|Occupant of three-wheeled motor vehicle injured in collision with two- or three- wheeled motor vehicle|Occupant of three-wheeled motor vehicle injured in collision with car, pick-up truck or van|Occupant of three-wheeled motor vehicle injured in collision with heavy transport vehicle or bus|Occupant of three-wheeled motor vehicle injured in collision with railway train or railway vehicle|Occupant of three-wheeled motor vehicle injured in collision with other nonmotor vehicle|Occupant of three-wheeled motor vehicle injured in collision with fixed or stationary object|Occupant of three-wheeled motor vehicle injured in noncollision transport accident|Occupant of three-wheeled motor vehicle injured in other and unspecified transport accidents|Animal-rider or occupant of animal drawn vehicle injured in transport accident|Occupant of special all-terrain or other off-road motor vehicle, injured in transport accident"
# hospital capability values
hospital_capability_values <- "9908021|9908023|9908025|9908027|9908029|trauma center"
# days, hours, minutes, months
minor_values <- "days|2516001|hours|2516003|minutes|2516005|months|2516007"
year_values <- "2516009|years"
day_values <- "days|2516001"
hour_values <- "hours|2516003"
minute_values <- "minutes|2516005"
month_values <- "months|2516007"
# utilize applicable tables to analyze the data for the measure
if (
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(situation_table),
!is.null(vitals_table),
!is.null(procedures_table),
!is.null(exam_table),
!is.null(injury_table),
!is.null(disposition_table)
) &&
is.null(df)
) {
# Ensure df is a data frame or tibble
if (
any(
!(is.data.frame(patient_scene_table) &&
tibble::is_tibble(patient_scene_table)) ||
!(is.data.frame(response_table) &&
tibble::is_tibble(response_table)) ||
!(is.data.frame(situation_table) &&
tibble::is_tibble(situation_table)) ||
!(is.data.frame(vitals_table) && tibble::is_tibble(vitals_table)) ||
!(is.data.frame(procedures_table) &&
tibble::is_tibble(procedures_table)) ||
!(is.data.frame(exam_table) && tibble::is_tibble(exam_table)) ||
!(is.data.frame(injury_table) && tibble::is_tibble(injury_table)) ||
!(is.data.frame(disposition_table) &&
tibble::is_tibble(disposition_table))
)
) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required for each of the *_table arguments."
)
)
}
# Only check the date columns if they are in fact passed
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# Use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
# Convert quosures to names and check the column classes
incident_date_name <- rlang::as_name(incident_date)
patient_dob_name <- rlang::as_name(patient_dob)
if (
(!lubridate::is.Date(patient_scene_table[[incident_date_name]]) &
!lubridate::is.POSIXct(patient_scene_table[[incident_date_name]])) ||
(!lubridate::is.Date(patient_scene_table[[patient_dob_name]]) &
!lubridate::is.POSIXct(patient_scene_table[[patient_dob_name]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or a similar class."
)
}
}
progress_bar_population
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
###_____________________________________________________________________________
cli::cli_progress_update(
set = 1,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) /
365,
# system age check
system_age_65 = {{ epatient_15_col }} >= 65 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_64 = ({{ epatient_15_col }} < 65 &
{{ epatient_15_col }} >= 10) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_1 = {{ epatient_15_col }} < 10 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_2 = {{ epatient_15_col }} < 120 &
grepl(
pattern = minor_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10 = system_age_10_1 | system_age_10_2,
# calculated age check
calc_age_65 = patient_age_in_years_col >= 65,
calc_age_10_64 = patient_age_in_years_col < 65 &
patient_age_in_years_col >= 10,
calc_age_10 = patient_age_in_years_col < 10
)
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
final_data <- patient_scene_table |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_65 = {{ epatient_15_col }} >= 65 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_64 = ({{ epatient_15_col }} < 65 &
{{ epatient_15_col }} >= 10) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_1 = {{ epatient_15_col }} < 10 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_2 = {{ epatient_15_col }} < 120 &
grepl(
pattern = minor_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10 = system_age_10_1 | system_age_10_2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(
set = 2,
id = progress_bar_population,
force = TRUE
)
# possible injury
possible_injury_data <- situation_table |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = possible_injury,
x = {{ esituation_02_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 3,
id = progress_bar_population,
force = TRUE
)
# transports
transport_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 4,
id = progress_bar_population,
force = TRUE
)
# 911 calls
call_911_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = codes_911,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
# GCS
GCS_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_21_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = GCS_motor_values,
x = {{ evitals_21_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 5,
id = progress_bar_population,
force = TRUE
)
# lung assessment
lung_assessment_data <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_23_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = lung_assessment_values,
x = {{ eexam_23_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 6,
id = progress_bar_population,
force = TRUE
)
# chest assessment
chest_data <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_25_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(pattern = chest_assessment_values, x = {{ eexam_25_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# respiratory effort
respiratory_effort_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_15_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = respiratory_effort_values,
x = {{ evitals_15_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# airway management
airway_management_data <- procedures_table |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = airway_management_values,
x = {{ eprocedures_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 9,
id = progress_bar_population,
force = TRUE
)
# pulse oximetry
pulse_oximetry_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_12_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_12_col }} < 90
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 10,
id = progress_bar_population,
force = TRUE
)
# SBP
SBP_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_06_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_06_col }} < 110
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# heart rate and SBP
HR_SBP_data_10_65_plus <- vitals_table |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_10_col }},
{{ evitals_06_col }}
) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_10_col }} > {{ evitals_06_col }}
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 12,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age 65+
trauma_triage_1_2_data_65 <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_65,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 13,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age 10 - 65
trauma_triage_1_2_data_10_64 <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_10_64,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 14,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age < 10
trauma_triage_1_2_data_10 <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_10,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 15,
id = progress_bar_population,
force = TRUE
)
# extremities assessment
extremities_assessment_data <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_16_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = extremities_assessment_values,
x = {{ eexam_16_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 16,
id = progress_bar_population,
force = TRUE
)
# neurological assessment
neurological_assessment_data <- exam_table |>
dplyr::select({{ erecord_01_col }}, {{ eexam_20_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = neurological_assessment_values,
x = {{ eexam_20_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 17,
id = progress_bar_population,
force = TRUE
)
# tourniquet
tourniquet_data <- procedures_table |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = tourniquet_values,
x = {{ eprocedures_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 18,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 3 and 4
trauma_triage_3_4_data <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_04_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_3_4_values,
x = {{ einjury_04_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 19,
id = progress_bar_population,
force = TRUE
)
# fall height
fall_height_data <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_09_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ einjury_09_col }} > 10
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 20,
id = progress_bar_population,
force = TRUE
)
# scene delay
scene_delay_data <- response_table |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_10_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = scene_delay_values,
x = {{ eresponse_10_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 21,
id = progress_bar_population,
force = TRUE
)
# cause of injury
cause_of_injury_data <- injury_table |>
dplyr::select({{ erecord_01_col }}, {{ einjury_01_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = cause_of_injury_values,
x = {{ einjury_01_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 22,
id = progress_bar_population,
force = TRUE
)
# respiratory rate for < 10 yrs population
respiratory_rate_data <- vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_14_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_14_col }} < 10 | {{ evitals_14_col }} > 29
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 23,
id = progress_bar_population,
force = TRUE
)
# SBP check variable for ages < 10 years
# if using calculated and system ages
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
SBP_age_10_data <- final_data |>
dplyr::select(
{{ erecord_01_col }},
system_age_10,
calc_age_10,
{{ epatient_15_col }}
) |>
dplyr::distinct() |>
dplyr::filter(system_age_10 | calc_age_10) |>
dplyr::left_join(
vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_06_col }}) |>
dplyr::distinct(),
by = rlang::as_name(rlang::enquo(erecord_01_col))
) |>
dplyr::mutate(
SBP_10 = ({{ evitals_06_col }} + ({{ epatient_15_col }} * 2)) >= 70
) |>
dplyr::filter(SBP_10) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
# SBP check variable for ages < 10 years
# if using system ages only
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
SBP_age_10_data <- final_data |>
dplyr::select(
{{ erecord_01_col }},
system_age_10,
{{ epatient_15_col }}
) |>
dplyr::distinct() |>
dplyr::filter(system_age_10) |>
dplyr::left_join(
vitals_table |>
dplyr::select({{ erecord_01_col }}, {{ evitals_06_col }}) |>
dplyr::distinct(),
by = rlang::as_name(rlang::enquo(erecord_01_col))
) |>
dplyr::mutate(
SBP_10 = ({{ evitals_06_col }} + ({{ epatient_15_col }} * 2)) >= 70
) |>
dplyr::filter(SBP_10) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
}
cli::cli_progress_update(
set = 24,
id = progress_bar_population,
force = TRUE
)
# hospital capability
hospital_capability_data <- disposition_table |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_23_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = hospital_capability_values,
x = {{ edisposition_23_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 25,
id = progress_bar_population,
force = TRUE
)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORTS = {{ erecord_01_col }} %in% transport_data,
POSSIBLE_INJURY = {{ erecord_01_col }} %in% possible_injury_data,
GCS = {{ erecord_01_col }} %in% GCS_data,
LUNG = {{ erecord_01_col }} %in% lung_assessment_data,
CHEST = {{ erecord_01_col }} %in% chest_data,
RESPIRATORY_EFFORT = {{ erecord_01_col }} %in% respiratory_effort_data,
AIRWAY_MANAGEMENT = {{ erecord_01_col }} %in% airway_management_data,
EXTREMITIES = {{ erecord_01_col }} %in% extremities_assessment_data,
NEURO = {{ erecord_01_col }} %in% neurological_assessment_data,
TOURNIQUET = {{ erecord_01_col }} %in% tourniquet_data,
TRAUMA_TRIAGE_3_4 = {{ erecord_01_col }} %in% trauma_triage_3_4_data,
FALL_HEIGHT = {{ erecord_01_col }} %in% fall_height_data,
SCENE_DELAY = {{ erecord_01_col }} %in% scene_delay_data,
INJURY_CAUSE = {{ erecord_01_col }} %in% cause_of_injury_data,
PULSE_OXIMETRY = {{ erecord_01_col }} %in% pulse_oximetry_data,
SBP = {{ erecord_01_col }} %in% SBP_data,
SBP_10 = {{ erecord_01_col }} %in% SBP_age_10_data,
HR_SBP_10_65_PLUS = {{ erecord_01_col }} %in% HR_SBP_data_10_65_plus,
TRAUMA_TRIAGE_1_2_65 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_65,
TRAUMA_TRIAGE_1_2_10_64 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_10_64,
TRAUMA_TRIAGE_1_2_10 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_10,
RESPIRATORY_RATE_10 = {{ erecord_01_col }} %in% respiratory_rate_data,
HOSPITAL_CAPABILITY = {{ erecord_01_col }} %in% hospital_capability_data
)
cli::cli_progress_update(
set = 26,
id = progress_bar_population,
force = TRUE
)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
POSSIBLE_INJURY,
CALL_911,
TRANSPORTS
)
# Adult and Pediatric Populations
cli::cli_progress_update(
set = 27,
id = progress_bar_population,
force = TRUE
)
if (
# use the system generated and calculated ages
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter older adult
pop_65 <- initial_population |>
dplyr::filter(system_age_65 | calc_age_65) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_65 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 28,
id = progress_bar_population,
force = TRUE
)
# filter ages 10 to 65
pop_10_64 <- initial_population |>
dplyr::filter(system_age_10_64 | calc_age_10_64) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_10_64 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 29,
id = progress_bar_population,
force = TRUE
)
# filter ages < 10
pop_10 <- initial_population |>
dplyr::filter(system_age_10 | calc_age_10) |>
dplyr::filter(
GCS |
RESPIRATORY_RATE_10 |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
SBP_10 |
TRAUMA_TRIAGE_1_2_10 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
} else if (
# only use the system generated values
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
# filter older adult
pop_65 <- initial_population |>
dplyr::filter(system_age_65) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_10_64 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 28,
id = progress_bar_population,
force = TRUE
)
# filter ages 10 to 65
pop_10_64 <- initial_population |>
dplyr::filter(system_age_10_64) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_10_64 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 29,
id = progress_bar_population,
force = TRUE
)
# filter ages < 10
pop_10 <- initial_population |>
dplyr::filter(system_age_10) |>
dplyr::filter(
GCS |
RESPIRATORY_RATE_10 |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
SBP_10 |
TRAUMA_TRIAGE_1_2_10 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
}
# summarize
# progress update, these will be repeated throughout the script
cli::cli_progress_update(
set = 30,
id = progress_bar_population,
force = TRUE
)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c(
"Situation possible injury",
"911 calls",
"Transports",
"GCS Motor 1-5",
"Breath sounds absent, decreased, increased respiratory effort",
"Flail segment, retraction, accessory muscles used in breathing",
"Respiratory effort apneic, labored, mech. assist, rapid, shallow, weak/agonal",
"Airway management procedures",
"Pulse oximetry < 90",
"SBP < 110",
"Respiratory rate < 10 or > 29 ages < 10 yrs",
"(SBP + (Pt. Age * 2)) >= 70 ages < 10 yrs",
"Heart rate greater than SBP ages >= 10 yrs",
"Met trauma triage criteria 1-2 ages 65+ yrs",
"Met trauma triage criteria 1-2 ages 10-64 yrs",
"Met trauma triage criteria 1-2 ages < 10 yrs",
"Motor function abnormal/weakness or sensation absent",
"Hemiplegia left/right, weakness left/right",
"Tournique procedure",
"Trauma triage criteria 3-4",
"Cause of Injury matches V20-V39, V80, V86",
"Scene delay = extrication",
"Fall > 10 ft.",
"Transported to a Trauma Center",
"Patients 65+ yrs denominator",
"Patients 10-64 yrs denominator",
"Patients < 10 yrs denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$POSSIBLE_INJURY, na.rm = TRUE),
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$TRANSPORTS, na.rm = TRUE),
sum(computing_population$GCS, na.rm = TRUE),
sum(computing_population$LUNG, na.rm = TRUE),
sum(computing_population$CHEST, na.rm = TRUE),
sum(computing_population$RESPIRATORY_EFFORT, na.rm = TRUE),
sum(computing_population$AIRWAY_MANAGEMENT, na.rm = TRUE),
sum(computing_population$PULSE_OXIMETRY, na.rm = TRUE),
sum(computing_population$SBP, na.rm = TRUE),
sum(computing_population$RESPIRATORY_RATE_10, na.rm = TRUE),
sum(computing_population$SBP_10, na.rm = TRUE),
sum(computing_population$HR_SBP_10_65_PLUS, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_65, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_10_64, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_10, na.rm = TRUE),
sum(computing_population$EXTREMITIES, na.rm = TRUE),
sum(computing_population$NEURO, na.rm = TRUE),
sum(computing_population$TOURNIQUET, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_3_4, na.rm = TRUE),
sum(computing_population$INJURY_CAUSE, na.rm = TRUE),
sum(computing_population$SCENE_DELAY, na.rm = TRUE),
sum(computing_population$FALL_HEIGHT, na.rm = TRUE),
sum(computing_population$HOSPITAL_CAPABILITY, na.rm = TRUE),
nrow(pop_65),
nrow(pop_10_64),
nrow(pop_10),
nrow(initial_population),
nrow(computing_population)
)
)
cli::cli_progress_update(
set = 31,
id = progress_bar_population,
force = TRUE
)
# get the population of interest
trauma.04.population <- list(
filter_process = filter_counts,
population_65 = pop_65,
population_10_64 = pop_10_64,
population_10 = pop_10,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.04.population)
} else if (
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(situation_table),
is.null(vitals_table),
is.null(procedures_table),
is.null(exam_table),
is.null(injury_table),
is.null(disposition_table)
) &&
!is.null(df)
# utilize a dataframe to analyze the data for the measure analytics
) {
# Ensure df is a data frame or tibble
if (!is.data.frame(df) && !tibble::is_tibble(df)) {
cli::cli_abort(
c(
"An object of class {.cls data.frame} or {.cls tibble} is required as the first argument.",
"i" = "The passed object is of class {.val {class(df)}}."
)
)
}
# only check the date columns if they are in fact passed
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# use quasiquotation on the date variables to check format
incident_date <- rlang::enquo(incident_date_col)
patient_dob <- rlang::enquo(patient_DOB_col)
if (
(!lubridate::is.Date(df[[rlang::as_name(incident_date)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(incident_date)]])) ||
(!lubridate::is.Date(df[[rlang::as_name(patient_dob)]]) &
!lubridate::is.POSIXct(df[[rlang::as_name(patient_dob)]]))
) {
cli::cli_abort(
"For the variables {.var incident_date_col} and {.var patient_DOB_col}, one or both of these variables were not of class {.cls Date} or a similar class. Please format your {.var incident_date_col} and {.var patient_DOB_col} to class {.cls Date} or similar class."
)
}
}
progress_bar_population
###_____________________________________________________________________________
# from the full dataframe with all variables
# create one fact table and several dimension tables
# to complete calculations and avoid issues due to row
# explosion
###_____________________________________________________________________________
# fact table
# the user should ensure that variables beyond those supplied for calculations
# are distinct (i.e. one value or cell per patient)
cli::cli_progress_update(
set = 1,
id = progress_bar_population,
force = TRUE
)
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ eresponse_10_col }},
{{ transport_disposition_col }},
{{ edisposition_23_col }},
{{ evitals_06_col }},
{{ evitals_10_col }},
{{ evitals_12_col }},
{{ evitals_14_col }},
{{ evitals_15_col }},
{{ evitals_21_col }},
{{ eexam_16_col }},
{{ eexam_20_col }},
{{ eexam_23_col }},
{{ eexam_25_col }},
{{ eprocedures_03_col }},
{{ einjury_01_col }},
{{ einjury_03_col }},
{{ einjury_04_col }},
{{ einjury_09_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
patient_age_in_years_col = as.numeric(difftime(
time1 = {{ incident_date_col }},
time2 = {{ patient_DOB_col }},
units = "days"
)) /
365,
# system age check
system_age_65 = {{ epatient_15_col }} >= 65 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_64 = ({{ epatient_15_col }} < 65 &
{{ epatient_15_col }} >= 10) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_1 = {{ epatient_15_col }} < 10 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_2 = {{ epatient_15_col }} < 120 &
grepl(
pattern = minor_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10 = system_age_10_1 | system_age_10_2,
# calculated age check
calc_age_65 = patient_age_in_years_col >= 65,
calc_age_10_64 = patient_age_in_years_col < 65 &
patient_age_in_years_col >= 10,
calc_age_10 = patient_age_in_years_col < 10
)
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
final_data <- df |>
dplyr::select(
-c(
{{ esituation_02_col }},
{{ eresponse_05_col }},
{{ eresponse_10_col }},
{{ transport_disposition_col }},
{{ edisposition_23_col }},
{{ evitals_06_col }},
{{ evitals_10_col }},
{{ evitals_12_col }},
{{ evitals_14_col }},
{{ evitals_15_col }},
{{ evitals_21_col }},
{{ eexam_16_col }},
{{ eexam_20_col }},
{{ eexam_23_col }},
{{ eexam_25_col }},
{{ eprocedures_03_col }},
{{ einjury_01_col }},
{{ einjury_03_col }},
{{ einjury_04_col }},
{{ einjury_09_col }}
)
) |>
dplyr::distinct({{ erecord_01_col }}, .keep_all = TRUE) |>
dplyr::mutate(
# system age check
system_age_65 = {{ epatient_15_col }} >= 65 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_64 = ({{ epatient_15_col }} < 65 &
{{ epatient_15_col }} >= 10) &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_1 = {{ epatient_15_col }} < 10 &
grepl(
pattern = year_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10_2 = {{ epatient_15_col }} < 120 &
grepl(
pattern = minor_values,
x = {{ epatient_16_col }},
ignore.case = TRUE
),
system_age_10 = system_age_10_1 | system_age_10_2
)
}
###_____________________________________________________________________________
### dimension tables
### each dimension table is turned into a vector of unique IDs
### that are then utilized on the fact table to create distinct variables
### that tell if the patient had the characteristic or not for final
### calculations of the numerator and filtering
###_____________________________________________________________________________
cli::cli_progress_update(
set = 2,
id = progress_bar_population,
force = TRUE
)
# possible injury
possible_injury_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ esituation_02_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = possible_injury,
x = {{ esituation_02_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 3,
id = progress_bar_population,
force = TRUE
)
# transports
transport_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ transport_disposition_col }}) |>
dplyr::distinct() |>
dplyr::filter(
dplyr::if_any(
{{ transport_disposition_col }},
~ grepl(pattern = transport_responses, x = ., ignore.case = TRUE)
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 4,
id = progress_bar_population,
force = TRUE
)
# 911 calls
call_911_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_05_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = codes_911,
x = {{ eresponse_05_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
# GCS
GCS_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_21_col }}) |>
dplyr::distinct() |>
dplyr::filter(grepl(
pattern = GCS_motor_values,
x = {{ evitals_21_col }},
ignore.case = TRUE
)) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 5,
id = progress_bar_population,
force = TRUE
)
# lung assessment
lung_assessment_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_23_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = lung_assessment_values,
x = {{ eexam_23_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 6,
id = progress_bar_population,
force = TRUE
)
# chest assessment
chest_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_25_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(pattern = chest_assessment_values, x = {{ eexam_25_col }})
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 7,
id = progress_bar_population,
force = TRUE
)
# respiratory effort
respiratory_effort_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_15_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = respiratory_effort_values,
x = {{ evitals_15_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 8,
id = progress_bar_population,
force = TRUE
)
# airway management
airway_management_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = airway_management_values,
x = {{ eprocedures_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 9,
id = progress_bar_population,
force = TRUE
)
# pulse oximetry
pulse_oximetry_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_12_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_12_col }} < 90
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 10,
id = progress_bar_population,
force = TRUE
)
# SBP
SBP_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_06_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_06_col }} < 110
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 11,
id = progress_bar_population,
force = TRUE
)
# heart rate and SBP
HR_SBP_data_10_65_plus <- df |>
dplyr::select(
{{ erecord_01_col }},
{{ evitals_10_col }},
{{ evitals_06_col }}
) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_10_col }} > {{ evitals_06_col }}
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 12,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age 65+
trauma_triage_1_2_data_65 <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_65,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 13,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age 10 - 65
trauma_triage_1_2_data_10_64 <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_10_64,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 14,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 1 and 2 age < 10
trauma_triage_1_2_data_10 <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_1_2_values_10,
x = {{ einjury_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 15,
id = progress_bar_population,
force = TRUE
)
# extremities assessment
extremities_assessment_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_16_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = extremities_assessment_values,
x = {{ eexam_16_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 16,
id = progress_bar_population,
force = TRUE
)
# neurological assessment
neurological_assessment_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eexam_20_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = neurological_assessment_values,
x = {{ eexam_20_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 17,
id = progress_bar_population,
force = TRUE
)
# tourniquet
tourniquet_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eprocedures_03_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = tourniquet_values,
x = {{ eprocedures_03_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 18,
id = progress_bar_population,
force = TRUE
)
# trauma triage criteria steps 3 and 4
trauma_triage_3_4_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_04_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = trauma_triage_3_4_values,
x = {{ einjury_04_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 19,
id = progress_bar_population,
force = TRUE
)
# fall height
fall_height_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_09_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ einjury_09_col }} > 10
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 20,
id = progress_bar_population,
force = TRUE
)
# scene delay
scene_delay_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ eresponse_10_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = scene_delay_values,
x = {{ eresponse_10_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 21,
id = progress_bar_population,
force = TRUE
)
# cause of injury
cause_of_injury_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ einjury_01_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = cause_of_injury_values,
x = {{ einjury_01_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 22,
id = progress_bar_population,
force = TRUE
)
# respiratory rate for < 10 yrs population
respiratory_rate_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ evitals_14_col }}) |>
dplyr::distinct() |>
dplyr::filter(
{{ evitals_14_col }} < 10 | {{ evitals_14_col }} > 29
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 23,
id = progress_bar_population,
force = TRUE
)
# SBP check variable for ages < 10 years
# if using calculated and system ages
if (
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
SBP_age_10_data <- df |>
dplyr::select(
{{ erecord_01_col }},
{{ epatient_15_col }},
{{ evitals_06_col }}
) |>
dplyr::distinct() |>
dplyr::left_join(
final_data |>
dplyr::select({{ erecord_01_col }}, system_age_10, calc_age_10) |>
dplyr::distinct(),
by = rlang::as_name(rlang::enquo(erecord_01_col))
) |>
dplyr::filter(system_age_10 | calc_age_10) |>
dplyr::mutate(
SBP_10 = ({{ evitals_06_col }} + ({{ epatient_15_col }} * 2)) >= 70
) |>
dplyr::filter(SBP_10) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
# SBP check variable for ages < 10 years
# if using system ages only
} else if (
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
SBP_age_10_data <- df |>
dplyr::select(
{{ erecord_01_col }},
{{ epatient_15_col }},
{{ evitals_06_col }}
) |>
dplyr::distinct() |>
dplyr::left_join(
final_data |> dplyr::select({{ erecord_01_col }}, system_age_10),
by = rlang::as_name(rlang::enquo(erecord_01_col))
) |>
dplyr::filter(system_age_10) |>
dplyr::mutate(
SBP_10 = ({{ evitals_06_col }} + ({{ epatient_15_col }} * 2)) >= 70
) |>
dplyr::filter(SBP_10) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
}
cli::cli_progress_update(
set = 24,
id = progress_bar_population,
force = TRUE
)
# hospital capability
hospital_capability_data <- df |>
dplyr::select({{ erecord_01_col }}, {{ edisposition_23_col }}) |>
dplyr::distinct() |>
dplyr::filter(
grepl(
pattern = hospital_capability_values,
x = {{ edisposition_23_col }},
ignore.case = TRUE
)
) |>
dplyr::distinct({{ erecord_01_col }}) |>
dplyr::pull({{ erecord_01_col }})
cli::cli_progress_update(
set = 25,
id = progress_bar_population,
force = TRUE
)
# assign variables to final data
computing_population <- final_data |>
dplyr::mutate(
CALL_911 = {{ erecord_01_col }} %in% call_911_data,
TRANSPORTS = {{ erecord_01_col }} %in% transport_data,
POSSIBLE_INJURY = {{ erecord_01_col }} %in% possible_injury_data,
GCS = {{ erecord_01_col }} %in% GCS_data,
LUNG = {{ erecord_01_col }} %in% lung_assessment_data,
CHEST = {{ erecord_01_col }} %in% chest_data,
RESPIRATORY_EFFORT = {{ erecord_01_col }} %in% respiratory_effort_data,
AIRWAY_MANAGEMENT = {{ erecord_01_col }} %in% airway_management_data,
EXTREMITIES = {{ erecord_01_col }} %in% extremities_assessment_data,
NEURO = {{ erecord_01_col }} %in% neurological_assessment_data,
TOURNIQUET = {{ erecord_01_col }} %in% tourniquet_data,
TRAUMA_TRIAGE_3_4 = {{ erecord_01_col }} %in% trauma_triage_3_4_data,
FALL_HEIGHT = {{ erecord_01_col }} %in% fall_height_data,
SCENE_DELAY = {{ erecord_01_col }} %in% scene_delay_data,
INJURY_CAUSE = {{ erecord_01_col }} %in% cause_of_injury_data,
PULSE_OXIMETRY = {{ erecord_01_col }} %in% pulse_oximetry_data,
SBP = {{ erecord_01_col }} %in% SBP_data,
SBP_10 = {{ erecord_01_col }} %in% SBP_age_10_data,
HR_SBP_10_65_PLUS = {{ erecord_01_col }} %in% HR_SBP_data_10_65_plus,
TRAUMA_TRIAGE_1_2_65 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_65,
TRAUMA_TRIAGE_1_2_10_64 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_10_64,
TRAUMA_TRIAGE_1_2_10 = {{ erecord_01_col }} %in%
trauma_triage_1_2_data_10,
RESPIRATORY_RATE_10 = {{ erecord_01_col }} %in% respiratory_rate_data,
HOSPITAL_CAPABILITY = {{ erecord_01_col }} %in% hospital_capability_data
)
cli::cli_progress_update(
set = 26,
id = progress_bar_population,
force = TRUE
)
# get the initial population
initial_population <- computing_population |>
dplyr::filter(
POSSIBLE_INJURY,
CALL_911,
TRANSPORTS
)
# Adult and Pediatric Populations
cli::cli_progress_update(
set = 27,
id = progress_bar_population,
force = TRUE
)
if (
# use the system generated and calculated ages
all(
!rlang::quo_is_null(rlang::enquo(incident_date_col)),
!rlang::quo_is_null(rlang::enquo(patient_DOB_col))
)
) {
# filter older adult
pop_65 <- initial_population |>
dplyr::filter(system_age_65 | calc_age_65) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_65 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 28,
id = progress_bar_population,
force = TRUE
)
# filter ages 10 to 65
pop_10_64 <- initial_population |>
dplyr::filter(system_age_10_64 | calc_age_10_64) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_10_64 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 29,
id = progress_bar_population,
force = TRUE
)
# filter ages < 10
pop_10 <- initial_population |>
dplyr::filter(system_age_10 | calc_age_10) |>
dplyr::filter(
GCS |
RESPIRATORY_RATE_10 |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
SBP_10 |
TRAUMA_TRIAGE_1_2_10 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
} else if (
# only use the system generated values
all(
is.null(incident_date_col),
is.null(patient_DOB_col)
)
) {
# filter older adult
pop_65 <- initial_population |>
dplyr::filter(system_age_65) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_65 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 28,
id = progress_bar_population,
force = TRUE
)
# filter ages 10 to 65
pop_10_64 <- initial_population |>
dplyr::filter(system_age_10_64) |>
dplyr::filter(
GCS |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
HR_SBP_10_65_PLUS |
TRAUMA_TRIAGE_1_2_10_64 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
cli::cli_progress_update(
set = 29,
id = progress_bar_population,
force = TRUE
)
# filter ages < 10
pop_10 <- initial_population |>
dplyr::filter(system_age_10) |>
dplyr::filter(
GCS |
RESPIRATORY_RATE_10 |
LUNG |
CHEST |
RESPIRATORY_EFFORT |
AIRWAY_MANAGEMENT |
PULSE_OXIMETRY |
SBP_10 |
TRAUMA_TRIAGE_1_2_10 |
EXTREMITIES |
NEURO |
TOURNIQUET |
TRAUMA_TRIAGE_3_4 |
FALL_HEIGHT |
SCENE_DELAY |
INJURY_CAUSE
)
}
# summarize
# progress update, these will be repeated throughout the script
cli::cli_progress_update(
set = 30,
id = progress_bar_population,
force = TRUE
)
# summarize counts for populations filtered
filter_counts <- tibble::tibble(
filter = c(
"Situation possible injury",
"911 calls",
"Transports",
"GCS Motor 1-5",
"Breath sounds absent, decreased, increased respiratory effort",
"Flail segment, retraction, accessory muscles used in breathing",
"Respiratory effort apneic, labored, mech. assist, rapid, shallow, weak/agonal",
"Airway management procedures",
"Pulse oximetry < 90",
"SBP < 110",
"Respiratory rate < 10 or > 29 ages < 10 yrs",
"(SBP + (Pt. Age * 2)) >= 70 ages < 10 yrs",
"Heart rate greater than SBP ages >= 10 yrs",
"Met trauma triage criteria 1-2 ages 65+ yrs",
"Met trauma triage criteria 1-2 ages 10-64 yrs",
"Met trauma triage criteria 1-2 ages < 10 yrs",
"Motor function abnormal/weakness or sensation absent",
"Hemiplegia left/right, weakness left/right",
"Tournique procedure",
"Trauma triage criteria 3-4",
"Cause of Injury matches V20-V39, V80, V86",
"Scene delay = extrication",
"Fall > 10 ft.",
"Transported to a Trauma Center",
"Patients 65+ yrs denominator",
"Patients 10-64 yrs denominator",
"Patients < 10 yrs denominator",
"Initial population",
"Total dataset"
),
count = c(
sum(computing_population$POSSIBLE_INJURY, na.rm = TRUE),
sum(computing_population$CALL_911, na.rm = TRUE),
sum(computing_population$TRANSPORTS, na.rm = TRUE),
sum(computing_population$GCS, na.rm = TRUE),
sum(computing_population$LUNG, na.rm = TRUE),
sum(computing_population$CHEST, na.rm = TRUE),
sum(computing_population$RESPIRATORY_EFFORT, na.rm = TRUE),
sum(computing_population$AIRWAY_MANAGEMENT, na.rm = TRUE),
sum(computing_population$PULSE_OXIMETRY, na.rm = TRUE),
sum(computing_population$SBP, na.rm = TRUE),
sum(computing_population$RESPIRATORY_RATE_10, na.rm = TRUE),
sum(computing_population$SBP_10, na.rm = TRUE),
sum(computing_population$HR_SBP_10_65_PLUS, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_65, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_10_64, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_1_2_10, na.rm = TRUE),
sum(computing_population$EXTREMITIES, na.rm = TRUE),
sum(computing_population$NEURO, na.rm = TRUE),
sum(computing_population$TOURNIQUET, na.rm = TRUE),
sum(computing_population$TRAUMA_TRIAGE_3_4, na.rm = TRUE),
sum(computing_population$INJURY_CAUSE, na.rm = TRUE),
sum(computing_population$SCENE_DELAY, na.rm = TRUE),
sum(computing_population$FALL_HEIGHT, na.rm = TRUE),
sum(computing_population$HOSPITAL_CAPABILITY, na.rm = TRUE),
nrow(pop_65),
nrow(pop_10_64),
nrow(pop_10),
nrow(initial_population),
nrow(computing_population)
)
)
cli::cli_progress_update(
set = 31,
id = progress_bar_population,
force = TRUE
)
# get the population of interest
trauma.04.population <- list(
filter_process = filter_counts,
population_65 = pop_65,
population_10_64 = pop_10_64,
population_10 = pop_10,
initial_population = initial_population,
computing_population = computing_population
)
cli::cli_progress_done(id = progress_bar_population)
return(trauma.04.population)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.