train.stsvm: Training the data using stsvm methods

Description Usage Arguments Value Author(s) See Also Examples

View source: R/stSVM.R

Description

Training the data using stsvm methods

Usage

1
2
train.stsvm(x=x, y=y, DEBUG=FALSE,Gsub=Gsub, op.method="sp", op=10,aa=100,
			dk=dk, dk.tf=0.05,seed = 1234,Cs=10^(-3:3),EN2SY=NULL)

Arguments

x

expression data for training

y

Class labels

DEBUG

show debugging information in screen more or less.

Gsub

an adjacency matrix that represents the underlying biological network.

op.method

Method for selecet optimal feature subgoups: pt is permutation test, sp is span bound.

op

optimal on top op

aa

permutation test steps

dk

Random Walk Kernel matrix of network

dk.tf

cut off p-value of permutation test

seed

seed for random sampling.

Cs

Soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

EN2SY

A list for mapping gene sybol ids or entez ids.

Value

The list returned

trained

The tranined models for traning folds

feat

The feature selected by each by the train

Author(s)

Yupeng Cun yupeng.cun@gmail.com

See Also

See cv.stsvm

Examples

1
#see cv.stsvm

netClass documentation built on May 29, 2017, 7:18 p.m.