cv.stsvm: Cross validation for smoothed t-statistic to select...

Description Usage Arguments Value Author(s) References Examples

View source: R/stSVM.R

Description

Cross validation for smoothed t-statistic to select significant top ranked differential expressed genes

Usage

1
2
3
cv.stsvm(x=x, x.mi=NULL,y=y, folds=5,Gsub=matrix(1,100,100),op.method=c("pt","spb"), 
		repeats=3, parallel=FALSE, cores=2,DEBUG=TRUE, pt.pvalue=0.05,op=0.85,
		aa=1000,a=1,p=2,allF=TRUE, seed=1234,Cs=10^c(-3:3))

Arguments

x

A p x n matrix of expression measurements with p samples and n genes.

x.mi

A p x m matrix of expression measurements with p samples and m miRNAs.

y

A factor of length p comprising the class labels.

folds

Folds number of folds to perform

Gsub

An adjacency matrix that represents the underlying biological network.

op.method

Method for selecet optimal feature subgoups: pt is permutation test, sp is span bound.

repeats

Number of how often to repeat the x-fold cross-validation

parallel

Use parallel computing or not

cores

Number of cores will used when parallel is TRUE

DEBUG

Show debugging information in screen more or less.

pt.pvalue

Cut off p-value of permutation test

op

Optimal on top op

aa

permutation test steps for permutation test (pt); low bounds top op

a

constant value of random walk kernel

p

random walk step(s) of random walk kernel

allF

Using all features (TRUE) or only these genes mapped to prior information (FALSE).

seed

seed for random sampling.

Cs

Soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

Value

a LIST for Cross-Validation results

auc

The AUC values of each test fold

fits

The tranined models for traning folds

feat

The feature selected by each by the fits

labels

the original lables for training

Author(s)

Yupeng Cun yupeng.cun@gmail.com

References

Yupeng Cun, Holger Frohlich (2013) Network and Data Integration for Biomarker Signature Discovery via Network Smoothed T-Statistics. PLoS ONE 8(9): e73074.

Examples

1
2
3
4
5
6
7
8
9
library(netClass)
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y

r.stsvm <- cv.stsvm(x=x[,1:500],x.mi=NULL,y=y,folds=3,Gsub=ad.matrix,op.method="pt",
				repeats=1, parallel=FALSE, cores=2,DEBUG=TRUE,pt.pvalue=0.05,op=0.9,
				aa=5,a=1,p=2,allF=TRUE, seed=1234,Cs=10^(-3:3))

netClass documentation built on May 29, 2017, 7:18 p.m.