Nothing
library(testthat)
# Test ClusteredNeuroVol function
test_that("ClusteredNeuroVol works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
expect_s4_class(clusvol, "ClusteredNeuroVol")
# Add more tests to check the correctness of the output, e.g., dimensions, etc.
})
# Test as.DenseNeuroVol function
test_that("as.DenseNeuroVol works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
# Use the previously created clusvol object from the ClusteredNeuroVol test
dense_vol <- as(clusvol, "DenseNeuroVol")
expect_s4_class(dense_vol, "DenseNeuroVol")
# Add more tests to check the correctness of the output, e.g., dimensions, etc.
})
# Test show method for ClusteredNeuroVol
test_that("show method for ClusteredNeuroVol works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
# Capture the output of the show method
output <- capture.output(show(clusvol))
# Check if the output contains the necessary information
expect_true(any(grepl("NeuroVol", output)))
expect_true(any(grepl("Type", output)))
# Add more tests to check the correctness of the output
})
# Test centroids function
test_that("centroids works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
centroids_com <- centroids(clusvol, type = "center_of_mass")
centroids_medoid <- centroids(clusvol, type = "medoid")
expect_equal(ncol(centroids_com), 3)
expect_equal(nrow(centroids_com), num_clusters(clusvol))
expect_equal(ncol(centroids_medoid), 3)
expect_equal(nrow(centroids_medoid), num_clusters(clusvol))
})
# Test split_clusters function
test_that("split_clusters works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
vol <- NeuroVol(array(runif(16^3), c(16, 16, 16)), bspace)
clusters_split <- split_clusters(vol, clusvol)
expect_equal(length(clusters_split), num_clusters(clusvol))
# Add more tests to check the correctness of the output
})
# Test num_clusters function
test_that("num_clusters works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
num_clus <- num_clusters(clusvol)
expect_equal(num_clus, 10)
})
# Test as.dense function
test_that("as.dense works correctly", {
bspace <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
grid <- index_to_grid(bspace, 1:(16 * 16 * 16))
kres <- kmeans(grid, centers = 10)
mask <- NeuroVol(rep(1, 16^3), bspace)
clusvol <- ClusteredNeuroVol(mask, kres$cluster)
dense_vol <- as.dense(clusvol)
expect_s4_class(dense_vol, "NeuroVol")
# Add more tests to check the correctness of the output, e.g., dimensions, etc.
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.