nlmixr2Eval_ | R Documentation |
Create a gradient function based on gill numerical differences
nlmixr2Eval_(theta, md5)
nlmixr2Unscaled_(theta, md5)
nlmixr2Grad_(theta, md5)
nlmixr2ParHist_(md5)
nlmixr2GradFun(
what,
envir = parent.frame(),
which,
thetaNames,
gillRtol = sqrt(.Machine$double.eps),
gillK = 10L,
gillStep = 2,
gillFtol = 0,
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1
)
theta |
for the internal functions theta is the parameter values |
md5 |
the md5 identifier for the internal gradient function information. |
what |
either a function or a non-empty character string naming the function to be called. |
envir |
an environment within which to evaluate the call. This
will be most useful if |
which |
Which parameters to calculate the forward difference and optimal forward difference interval |
thetaNames |
Names for the theta parameters |
gillRtol |
The relative tolerance used for Gill 1983 determination of optimal step size. |
gillK |
The total number of possible steps to determine the optimal forward/central difference step size per parameter (by the Gill 1983 method). If 0, no optimal step size is determined. Otherwise this is the optimal step size determined. |
gillStep |
When looking for the optimal forward difference step size, this is This is the step size to increase the initial estimate by. So each iteration the new step size = (prior step size)*gillStep |
gillFtol |
The gillFtol is the gradient error tolerance that is acceptable before issuing a warning/error about the gradient estimates. |
useColor |
Boolean indicating if focei can use ASCII color codes |
printNcol |
Number of columns to printout before wrapping parameter estimates/gradient |
print |
Integer representing when the outer step is printed. When this is 0 or do not print the iterations. 1 is print every function evaluation (default), 5 is print every 5 evaluations. |
A list with 'eval', 'grad', 'hist' and 'unscaled' functions. This is an internal module used with dynmodel
func0 <- function(x){ sum(sin(x)) }
## This will printout every interation or when print=X
gf <- nlmixr2GradFun(func0)
## x
x <- (0:10)*2*pi/10;
gf$eval(x)
gf$grad(x)
## x2
x2 <- x+0.1
gf$eval(x2)
gf$grad(x2)
## Gives the parameter history as a data frame
gf$hist()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.