Nothing
Cirincione_2017_exenatide <- function() {
description <- "Exenatide immediate-release PK model (Cirincione 2017)"
reference <- "Cirincione B, Mager DE. Population pharmacokinetics of exenatide. British Journal of Clinical Pharmacology. 2017;83(3):517-526. doi:10.1111/bcp.13135"
covariateData <-
list(
AMT = "Dose (ug)",
DV = "Exenatide plasma concentration (pg/mL)",
eGFR = "Modification of Diet in Renal Disease estimate of glomerular filtration rate (mL/min/(1.73m^2))",
WT = "Baseline body weight (kg)",
DVID = "Was the subject in Study 1 ('study1'), Study 5 ('study5'), or another study ('otherStudy')? Typically 'otherStudy'"
)
# parameters are from Table 2 in the paper
ini({
lcl <- log(4.58) ; label("Linear clearance rate (L/hr)")
etalcl ~ log(1.339)
e_cl_gfr <- 0.838; label("Effect of eGFR on clearance (unitless)")
lq <- log(3.72); label("Intercompartmental clearance (L/hr)") # written as Cld in the model table
lkm <- log(567); label("Michaelis-Menten constant for clearance (pg/mL)")
etalkm ~ log(1.957)
lvmax <- log(1.55); label("Maximum Michaelis-Menten clearance (ug/hr)")
lvp <- log(7.04); label("Peripheral compartment volume (L)")
lvc <- log(7.03); label("Typical central compartment clearance (L)")
etalvc ~ log(1.805)
e_vc_wt <- 2.67; label("Effect of body weight on central volume (unitless)")
lkamax <- log(0.0813); label("Maximum first-order absorption rate (1/hr)")
lkmka <- log(16.9); label("Michaelis-Menten constant for absorption (ug)")
ttau <- fixed(1.35); label("Duration of zero-order absorption")
fdepot <- fixed(1); label("Bioavailability (fraction)")
logitfr <- logit(0.628); label("Fraction of dose with first-order absorption")
expSdOther <- 0.373 ; label("Exponential residual error for all other studies")
expSdStudy1 <- 0.39 ; label("Exponential residual error for Study 1")
expSdStudy5 <- 0.08 ; label("Exponential residual error for Study 5")
})
model({
# declare compartment order
cmt(depot)
cmt(central)
cmt(peripheral1)
# cl equation is from table 2 in the paper
cl <- exp(lcl + etalcl)*(eGFR/80)^e_cl_gfr
q <- exp(lq)
km <- exp(lkm + etalkm)
vmax <- exp(lvmax)
vp <- exp(lvp)
# vc equation is from table 2 in the paper
vc <- exp(lvc + etalvc)*(WT/84.8)^e_vc_wt
kamax <- exp(lkamax)
kmka <- exp(lkmka)
fr <- expit(logitfr)
kel <- cl/vc + vmax/(km*vc + central)
k12 <- q/vc
k21 <- q/vp
# Need to turn k0 off at time > tau
mtime(tau) <- ttau
kzero <- (1-fr)*podo(depot)/tau
if (tad(depot) > tau) kzero <- 0.0
# Need to turn ka on at time > tau
ka <- fr*kamax/(kmka + depot)
if (tad(depot) <= tau) ka <- 0.0
d/dt(depot) <- -ka*depot - kzero
d/dt(central) <- ka*depot + kzero - kel*central - k12*central + k21*peripheral1
d/dt(peripheral1) <- k12*central - k21*peripheral1
f(depot) <- fdepot
cp <- central/vc
cp1 <- cp
cp5 <- cp
cp ~ lnorm(expSdOther) | otherStudy
cp1 ~ lnorm(expSdStudy1) | study1
cp5 ~ lnorm(expSdStudy5) | study5
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.