Nothing
#'
#' @title self start for linear-plateau function
#' @name SSlinp
#' @rdname SSlinp
#' @description Self starter for linear-plateau function with parameters a (intercept), b (slope), xs (break-point)
#' @param x input vector
#' @param a the intercept
#' @param b the slope
#' @param xs break-point of transition between linear and plateau
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @details This function is linear when \eqn{x < xs: (a + b * x)} and flat (\eqn{asymptote = a + b * xs}) when \eqn{x >= xs}.
#' @seealso package \CRANpkg{segmented}.
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(123)
#' x <- 1:30
#' y <- linp(x, 0, 1, 20) + rnorm(30, 0, 0.5)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSlinp(x, a, b, xs), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' ## Confidence intervals
#' confint(fit)
#' }
#'
NULL
linpInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 3){
stop("Too few distinct input values to fit a linear-plateau")
}
## Dumb guess for a and b is to fit a linear regression to half the data
xy1 <- xy[1:floor(nrow(xy)/2),]
fit1 <- stats::lm(xy1[,"y"] ~ xy1[,"x"])
## Atomic bomb approach to kill a mosquito
objfun <- function(cfs){
pred <- linp(xy[,"x"], a=cfs[1], b=cfs[2], xs=cfs[3])
ans <- sum((xy[,"y"] - pred)^2)
ans
}
cfs <- c(coef(fit1),mean(xy[,"x"]))
op <- try(stats::optim(cfs, objfun, method = "L-BFGS-B",
upper = c(Inf, Inf, max(xy[,"x"])),
lower = c(-Inf, -Inf, min(xy[,"x"]))), silent = TRUE)
if(!inherits(op, "try-error")){
a <- op$par[1]
b <- op$par[2]
xs <- op$par[3]
}else{
## If it fails I use the mean for the breakpoint
a <- coef(fit1)[1]
b <- coef(fit1)[2]
xs <- mean(xy[,"x"])
}
value <- c(a, b, xs)
names(value) <- mCall[c("a","b","xs")]
value
}
#' @rdname SSlinp
#' @return linp: vector of the same length as x using the linear-plateau function
#' @export
linp <- function(x, a, b, xs){
.asym <- a + b * xs
.value <- (x < xs) * (a + b * x) + (x >= xs) * .asym
## Derivative with respect to a when (x < xs)
## .exp1 <- deriv(~ a + b * x + c * x^2, "a")
.exp1 <- 1 ## ifelse(x < xs, 1, 1)
## Derivative with respect to b
## if x < xs: .exp2 <- deriv(~ a + b * x + c * x^2, "b")
## if x >= xs: .exp2 <- deriv(~ a + b * xs + c * x^2, "b")
.exp2 <- ifelse(x < xs, x, xs)
## Derivative with respect to xs
## .exp3 <- deriv(~ a + b * xs, "xs")
.exp3 <- ifelse(x < xs, 0, b)
.actualArgs <- as.list(match.call()[c("a","b","xs")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 3L), list(NULL, c("a","b","xs")))
.grad[, "a"] <- .exp1
.grad[, "b"] <- .exp2
.grad[, "xs"] <- .exp3
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSlinp
#' @export
SSlinp <- selfStart(linp, initial = linpInit, c("a","b","xs"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.