Nothing
#'
#' The equation is: \deqn{ a * x ^ c / (1 + b * x ^ d)}
#'
#' @title self start for a rational curve
#' @name SSratio
#' @rdname SSratio
#' @description Self starter for a rational curve
#' @param x input vector
#' @param a parameter related to the maximum value of the response (numerator)
#' @param b power exponent for numerator
#' @param c parameter related to the maximum value of the response (denominator)
#' @param d power exponent for denominator
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @details This function is described in Archontoulis and Miguez (2015) - (doi:10.2134/agronj2012.0506).
#' One example application is in Bril et al. (1994) \url{https://edepot.wur.nl/333930} - pages 19 and 21.
#' The parameters are difficult to interpret, but the function is very flexible. I have not tested this,
#' but it might be beneficial to re-scale x and y to the (0,1) range if this function is hard to fit.
#' \url{https://en.wikipedia.org/wiki/Rational_function}.
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' require(minpack.lm)
#' set.seed(1234)
#' x <- 1:100
#' y <- ratio(x, 1, 0.5, 1, 1.5) + rnorm(length(x), 0, 0.025)
#' dat <- data.frame(x = x, y = y)
#' fit <- nlsLM(y ~ SSratio(x, a, b, c, d), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' }
NULL
ratioInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4){
stop("Too few distinct input values to fit a rational function.")
}
objfun <- function(cfs){
pred <- ratio(xy[,"x"], a=cfs[1], b=cfs[2], c=cfs[3], d=cfs[4])
ans <- sum((xy[,"y"] - pred)^2)
ans
}
cfs <- c(1,1,1,1)
op <- try(stats::optim(cfs, objfun), silent = TRUE)
if(!inherits(op, "try-error")){
a <- op$par[1]
b <- op$par[2]
c <- op$par[3]
d <- op$par[4]
}else{
op <- try(stats::optim(cfs, objfun, method = "SANN"), silent = TRUE)
if(!inherits(op, "try-error")){
a <- op$par[1]
b <- op$par[2]
c <- op$par[3]
d <- op$par[4]
warning('Used method = "SANN" in optim')
}else{
a <- 1
b <- 1
c <- 1
d <- 1
warning("Could not find suitable starting values")
}
}
value <- c(a, b, c, d)
names(value) <- mCall[c("a","b","c","d")]
value
}
#' @rdname SSratio
#' @return ratio: vector of the same length as x using a rational function
#' @export
#'
ratio <- function(x, a, b, c, d){
.expre1 <- a * x^c
.expre2 <- 1 + b * x^d
.value <- .expre1/.expre2
## Derivative with respect to a
## deriv(~ (a * x^c)/(1 + b * x^d), "a")
.expr1 <- x^c
.expr5 <- 1 + b * x^d
.exp1 <- .expr1/.expr5
.exp1 <- ifelse(is.nan(.exp1),0,.exp1)
## Derivative with respect to b
## deriv(~ (a * x^c)/(1 + b * x^d), "b")
.expr2 <- a * x^c
.expr3 <- x^d
.exp2 <- -(.expr2 * .expr3/.expr5^2)
.exp2 <- ifelse(is.nan(.expr2), 0, .expr2)
## Derivative with respect to c
## deriv(~ (a * x^c)/(1 + b * x^d), "c")
.lx <- suppressWarnings(log(x))
.exp3 <- a * (.expr1 * .lx)/.expr5
.exp3 <- ifelse(is.nan(.expr3), 0, .expr3)
## Derivative with respect to d
.exp4 <- -(.expr2 * (b * (.expr3 * .lx))/.expr5^2)
.exp4 <- ifelse(is.nan(.exp4), 0, .exp4)
.actualArgs <- as.list(match.call()[c("a", "b", "c", "d")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 4L), list(NULL, c("a", "b", "c","d")))
.grad[, "a"] <- .exp1
.grad[, "b"] <- .exp2
.grad[, "c"] <- .exp3
.grad[, "d"] <- .exp4
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSratio
#' @export
SSratio <- selfStart(ratio, initial = ratioInit, c("a", "b", "c", "d"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.