Nothing
## Example of a bad model vs. uncertainty vs. model averaging
require(nlraa)
packageVersion("nlraa")
require(car)
require(ggplot2)
run.predict.nls <- Sys.info()[["user"]] == "fernandomiguez" && FALSE
if(run.predict.nls){
data(barley, package = "nlraa")
ggplot(data = barley, aes(x = NF, y = yield)) +
geom_point() +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("Barley yield response to N fertilizer")
## This is not a 'good' model but we'll go with it
fm.LP <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley)
sim.LP <- simulate_nls(fm.LP, nsim = 1e3)
## Does predict work for a single model?
prd.LP <- predict_nls(fm.LP)
prd.LP.ci <- predict_nls(fm.LP, interval = "confidence")
prd.LP.pi <- predict_nls(fm.LP, interval = "prediction")
ggplot(data = barley, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.LP))) +
geom_vline(xintercept = coef(fm.LP)[3]) +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("Linear-plateau fit with break-point")
barleyA <- cbind(barley, summary_simulate(sim.LP, probs = c(0.05, 0.95)))
fm.LP.bt <- boot_nls(fm.LP) ## Bootstrap
fm.LP.bt.ci <- confint(fm.LP.bt) ## Bootstrap CI
fm.LP.ci <- confint(fm.LP) ## Profiled CI
ggplot(data = barleyA, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.LP))) +
geom_ribbon(aes(ymin = Q5, ymax = Q95), alpha = 0.3, fill = "purple") +
geom_vline(xintercept = fm.LP.bt$t0[3]) +
geom_errorbarh(aes(y = 100, xmin = fm.LP.ci[3,1], xmax = fm.LP.ci[3,2],
color = "profiled"), color = "blue") +
geom_errorbarh(aes(y = 50, xmin = fm.LP.bt.ci[3,1], xmax = fm.LP.bt.ci[3,2],
color = "bootstrap"), color = "purple") +
geom_text(aes(x = 13, y = 100, label = "profiled"), color = "blue") +
geom_text(aes(x = 13, y = 50, label = "bootstrap"), color = "purple") +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("90% uncertainty bands and intervals for the break-point")
## What if we fit several models?
fm.L <- lm(yield ~ NF, data = barley)
fm.Q <- lm(yield ~ NF + I(NF^2), data = barley)
fm.A <- nls(yield ~ SSasymp(NF, Asym, R0, lrc), data = barley)
fm.BL <- nls(yield ~ SSblin(NF, a, b, xs, c), data = barley)
print(IC_tab(fm.L, fm.Q, fm.A, fm.LP, fm.BL), digits = 2)
ggplot(data = barley, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.L), color = "Linear")) +
geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) +
geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) +
geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) +
geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("Different model fits")
## Each model prediction is weighted using the AIC values
prd <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL)
prdc <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL, interval = "confidence")
prdp <- predict_nls(fm.L, fm.Q, fm.A, fm.LP, fm.BL, interval = "prediction")
ggplot(data = barley, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.L), color = "Linear")) +
geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) +
geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) +
geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) +
geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) +
geom_line(aes(y = prd, color = "Avg. Model"), size = 1.2, color = "black") +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("Different model fits and average model weighted by AIC")
ggplot(data = barley, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.L), color = "Linear")) +
geom_line(aes(y = fitted(fm.Q), color = "Quadratic")) +
geom_line(aes(y = fitted(fm.A), color = "Asymptotic")) +
geom_line(aes(y = fitted(fm.LP), color = "Linear-plateau")) +
geom_line(aes(y = fitted(fm.BL), color = "Bi-linear")) +
geom_line(aes(y = prd, color = "Avg. Model"), size = 1.2, color = "black") +
geom_ribbon(aes(ymin = prdc[,3], ymax = prdc[,4]),
fill = "purple", alpha = 0.3) +
geom_ribbon(aes(ymin = prdp[,3], ymax = prdp[,4]),
fill = "purple", alpha = 0.1) +
xlab("NF (g/m2)") + ylab("Yield (g/m2)") +
ggtitle("Model fits, 90% uncertainty bands for confidence and prediction")
## Do GAMs work?
require(mgcv)
fm.L <- lm(yield ~ NF, data = barley)
fm.Q <- lm(yield ~ NF + I(NF^2), data = barley)
fm.C <- lm(yield ~ NF + I(NF^2) + I(NF^3), data = barley)
fm.A <- nls(yield ~ SSasymp(NF, Asym, R0, lrc), data = barley)
fm.LP <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley)
fm.G <- gam(yield ~ NF + s(NF, k = 3), data = barley)
fm.Gs <- simulate_lm(fm.G, nsim = 1e3)
fm.Gss <- summary_simulate(fm.Gs, probs = c(0.05, 0.95))
barleyAS <- cbind(barley, fm.Gss)
## The default predict method for GAMs does not produce intervals
## But we can generate them
fm.Gp <- predict(fm.G, se.fit = TRUE)
qnt <- qt(0.05, 72)
fm.Gpd <- data.frame(prd = fm.Gp$fit,
lwr = fm.Gp$fit + qnt * fm.Gp$se.fit,
upr = fm.Gp$fit - qnt * fm.Gp$se.fit)
## These intervals are almost exactly the same as the ones
## obtained through simulation
print(IC_tab(fm.L, fm.Q, fm.C, fm.A, fm.LP, fm.G), digits = 2)
fm.prd <- predict_nls(fm.L, fm.Q, fm.C, fm.A, fm.LP, fm.G)
ggplot(data = barleyAS, aes(x = NF, y = yield)) +
geom_point() +
geom_line(aes(y = fitted(fm.G), color = "gam")) +
geom_line(aes(y = fitted(fm.C), color = "cubic")) +
geom_line(aes(y = Estimate, color = "simulate_lm")) +
geom_line(aes(y = fm.prd, color = "Avg. Model")) +
geom_ribbon(aes(ymin = Q5, ymax = Q95), fill = "purple", alpha = 0.3) +
ggtitle("90% bands based on simulation")
}
### Testing predict2_nls and also using newdata with a function which is not an SS ----
if(run.predict.nls){
require(ggplot2)
require(nlme)
data(Soybean)
SoyF <- subset(Soybean, Variety == "F" & Year == 1988)
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = SoyF)
## The SSlogis also supplies analytical derivatives
## therefore the predict function returns the gradient too
prd1 <- predict(fm1, newdata = SoyF)
## Gradient
head(attr(prd1, "gradient"))
## Prediction method using gradient
prds <- predict2_nls(fm1, interval = "conf")
SoyFA <- cbind(SoyF, prds)
ggplot(data = SoyFA, aes(x = Time, y = weight)) +
geom_point() +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 0.3) +
ggtitle("95% Confidence Bands")
### Without using a SS function
getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = SoyF)
fm11 <- nls(weight ~ Asym / (1 + exp((xmid - Time)/scal)),
start = c(Asym = 21, xmid = 45, scal = 10),
data = SoyF)
SoyF2 <- subset(Soybean, Variety == "F" & Year == 1989)
#### Using Monte Carlo method
prds2 <- predict_nls(fm11, interval = "conf", newdata = SoyF2)
SoyFA2 <- cbind(SoyF2, prds2)
ggplot(data = SoyFA2, aes(x = Time, y = weight)) +
geom_point() +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 0.3) +
ggtitle("Newdata: 95% Confidence Bands")
#### Using Delta method
prds3 <- predict2_nls(fm11, interval = "conf", newdata = SoyF2)
SoyFA3 <- cbind(SoyF2, prds3)
ggplot(data = SoyFA3, aes(x = Time, y = weight)) +
geom_point() +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 0.3) +
ggtitle("Newdata: 95% Confidence Bands")
#### Monte Carlo vs. Delta Method
ggplot() +
geom_point(aes(x = SoyFA2$Estimate, y = SoyFA3$Estimate)) +
xlab("Monte Carlo method") +
ylab("Delta method") +
geom_abline(intercept = 0, slope = 1) +
ggtitle("Estimates are identical as they should be")
ggplot() +
geom_point(aes(x = SoyFA2$Q2.5, y = SoyFA3$Q2.5)) +
xlab("Monte Carlo method") +
ylab("Delta method") +
geom_abline(intercept = 0, slope = 1) +
ggtitle("Lower bounds are similar")
ggplot() +
geom_point(aes(x = SoyFA2$Q97.5, y = SoyFA3$Q97.5)) +
xlab("Monte Carlo method") +
ylab("Delta method") +
geom_abline(intercept = 0, slope = 1) +
ggtitle("Upper bounds are similar")
ggplot() +
geom_point(aes(x = SoyFA2$Time, y = SoyFA2$Q2.5, color = "Monte Carlo")) +
geom_point(aes(x = SoyFA3$Time, y = SoyFA3$Q2.5, color = "Delta method")) +
geom_point(aes(x = SoyFA2$Time, y = SoyFA2$Q97.5, color = "Monte Carlo")) +
geom_point(aes(x = SoyFA3$Time, y = SoyFA3$Q97.5, color = "Delta method")) +
geom_line(aes(x = SoyFA2$Time, y = SoyFA2$Q2.5, color = "Monte Carlo")) +
geom_line(aes(x = SoyFA3$Time, y = SoyFA3$Q2.5, color = "Delta method")) +
geom_line(aes(x = SoyFA2$Time, y = SoyFA2$Q97.5, color = "Monte Carlo")) +
geom_line(aes(x = SoyFA3$Time, y = SoyFA3$Q97.5, color = "Delta method")) +
xlab("Time") + ylab("weight")
#### It appears that Monte Carlo is narrower so it might be underestimating
#### the uncertainty
#### Another example
data(Orange)
head(Orange)
Orange1 <- subset(Orange, Tree == 1)
fm111 <- nls(circumference ~ Asym / (1 + exp((xmid - age)/scal)),
start = c(Asym = 145, xmid = 922, scal = 200),
data = Orange1)
prds111 <- predict2_nls(fm111, interval = "conf")
Orange1A <- cbind(Orange1, prds111)
ggplot(data = Orange1A, aes(x = age, y = circumference)) +
geom_point() +
geom_line(aes(y = fitted(fm111))) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 1/3) +
ggtitle("Using the Delta method but no newdata")
prds112 <- predict_nls(fm111, interval = "conf")
Orange1A2 <- cbind(Orange1, prds112)
ggplot(data = Orange1A2, aes(x = age, y = circumference)) +
geom_point() +
geom_line(aes(y = fitted(fm111))) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 1/3) +
ggtitle("Using the Monte Carlo method but no newdata")
fgm <- gam(circumference ~ s(age, k = 7), data = Orange1)
prds113 <- predict_gam(fgm, interval = "conf")
Orange1A3 <- cbind(Orange1, prds113)
fm <- lm(circumference ~ age + I(age^2), data = Orange1)
prds114 <- predict_nls(fm, interval = "conf")
Orange1A4 <- cbind(Orange1, prds114)
ggplot() +
geom_point(aes(x = Orange1A2$age, y = Orange1A2$Q2.5, color = "Monte Carlo")) +
geom_point(aes(x = Orange1A$age, y = Orange1A$Q2.5, color = "Delta method")) +
geom_point(aes(x = Orange1A3$age, y = Orange1A3$Q2.5, color = "GAM")) +
geom_point(aes(x = Orange1A4$age, y = Orange1A4$Q2.5, color = "LM")) +
geom_point(aes(x = Orange1A2$age, y = Orange1A2$Q97.5, color = "Monte Carlo")) +
geom_point(aes(x = Orange1A$age, y = Orange1A$Q97.5, color = "Delta method")) +
geom_point(aes(x = Orange1A3$age, y = Orange1A3$Q97.5, color = "GAM")) +
geom_point(aes(x = Orange1A4$age, y = Orange1A4$Q97.5, color = "LM")) +
geom_line(aes(x = Orange1A2$age, y = Orange1A2$Q2.5, color = "Monte Carlo")) +
geom_line(aes(x = Orange1A$age, y = Orange1A$Q2.5, color = "Delta method")) +
geom_line(aes(x = Orange1A3$age, y = Orange1A3$Q2.5, color = "GAM")) +
geom_line(aes(x = Orange1A4$age, y = Orange1A4$Q2.5, color = "LM")) +
geom_line(aes(x = Orange1A2$age, y = Orange1A2$Q97.5, color = "Monte Carlo")) +
geom_line(aes(x = Orange1A$age, y = Orange1A$Q97.5, color = "Delta method")) +
geom_line(aes(x = Orange1A3$age, y = Orange1A3$Q97.5, color = "GAM")) +
geom_line(aes(x = Orange1A4$age, y = Orange1A4$Q97.5, color = "LM")) +
xlab("age") + ylab("circumference")
### With New data
Orange2 <- subset(Orange, Tree == 2)
prds121 <- predict2_nls(fm111, interval = "conf", newdata = Orange2)
Orange2A <- cbind(Orange2, prds121)
ggplot(data = Orange2A, aes(x = age, y = circumference)) +
geom_point() +
geom_line(aes(y = Estimate)) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 1/3) +
ggtitle("Using the Delta method with newdata")
prds122 <- predict_nls(fm111, interval = "conf")
Orange2A2 <- cbind(Orange1, prds122)
ggplot(data = Orange2A2, aes(x = age, y = circumference)) +
geom_point() +
geom_line(aes(y = fitted(fm111))) +
geom_ribbon(aes(ymin = Q2.5, ymax = Q97.5), fill = "purple", alpha = 1/3) +
ggtitle("Using the Monte Carlo method with newdata")
prds123 <- predict_gam(fgm, interval = "conf", newdata = Orange2)
Orange2A3 <- cbind(Orange2, prds123)
prds124 <- predict_nls(fm, interval = "conf")
Orange2A4 <- cbind(Orange2, prds124)
ggplot() +
geom_point(aes(x = Orange2A2$age, y = Orange2A2$Q2.5, color = "Monte Carlo")) +
geom_point(aes(x = Orange2A$age, y = Orange2A$Q2.5, color = "Delta method")) +
geom_point(aes(x = Orange2A3$age, y = Orange2A3$Q2.5, color = "GAM")) +
geom_point(aes(x = Orange2A4$age, y = Orange2A4$Q2.5, color = "LM")) +
geom_point(aes(x = Orange2A2$age, y = Orange2A2$Q97.5, color = "Monte Carlo")) +
geom_point(aes(x = Orange2A$age, y = Orange2A$Q97.5, color = "Delta method")) +
geom_point(aes(x = Orange2A3$age, y = Orange2A3$Q97.5, color = "GAM")) +
geom_point(aes(x = Orange2A4$age, y = Orange2A4$Q97.5, color = "LM")) +
geom_line(aes(x = Orange2A2$age, y = Orange2A2$Q2.5, color = "Monte Carlo")) +
geom_line(aes(x = Orange2A$age, y = Orange2A$Q2.5, color = "Delta method")) +
geom_line(aes(x = Orange2A3$age, y = Orange2A3$Q2.5, color = "GAM")) +
geom_line(aes(x = Orange2A4$age, y = Orange2A4$Q2.5, color = "LM")) +
geom_line(aes(x = Orange2A2$age, y = Orange2A2$Q97.5, color = "Monte Carlo")) +
geom_line(aes(x = Orange2A$age, y = Orange2A$Q97.5, color = "Delta method")) +
geom_line(aes(x = Orange2A3$age, y = Orange2A3$Q97.5, color = "GAM")) +
geom_line(aes(x = Orange2A4$age, y = Orange2A4$Q97.5, color = "LM")) +
xlab("age") + ylab("circumference")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.