Nothing
## Testing all SS functions in nlraa package
require(nlraa)
## 1. SSbgf
## This function won't be tested here as it is used extensively in the
## vignette nlraa::nlraa-AgronJ-paper
## However, in the future I will create a version reparameterized in
## terms of unconstrained parameters, because the condition t.m < t.e
## is not guranteed
## 2. SSbgf4
## It would also be beneficial to reparameterize this function
## for routine work in terms of unconstrained parameters
data(sm)
#' ## Let's just pick one crop
sm2 <- subset(sm, Crop == "M")
## For this particular problem it is easier to 'fix' t.b and w.b
fit <- nls(Yield ~ bgf2(DOY, w.max, w.b = 0, t.e, t.m, t.b = 141),
data = sm2, start = list(w.max = 16, t.e= 240, t.m = 200))
## 3. SSbgrp
x <- 1:30
y <- bgrp(x, 20, log(25), log(5)) + rnorm(30, 0, 1)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSbgrp(x, w.max, lt.e, ldt), data = dat)
exp(confint(fit)[2:3,])
## 4. SSbg4rp
set.seed(1234)
x <- 1:100
y <- bg4rp(x, 20, log(70), log(30), log(20)) + rnorm(100, 0, 1)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSbg4rp(x, w.max, lt.e, ldtm, ldtb), data = dat)
exp(coef(fit))[-1]
## 5. SSdlf
## Extended example in vignette 'nlraa-Oddi-LFMC'
## 6. SSricker
set.seed(123)
x <- 1:30
y <- 30 * x * exp(-0.3 * x) + rnorm(30, 0, 0.25)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSricker(x, a, b), data = dat)
confint(fit)
## 7. SSprofd
## I'm not a huge fan of this function as I think the dlf is more stable
set.seed(1234)
x <- 1:10
y <- profd(x, 0.3, 0.05, 0.5, 4) + rnorm(10, 0, 0.01)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSprofd(x, a, b, c, d), data = dat)
confint(fit, level = 0.9)
## 8. SSnrh
set.seed(1234)
x <- seq(0, 2000, 100)
y <- nrh(x, 35, 0.04, 0.83, 2) + rnorm(length(x), 0, 0.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSnrh(x, asym, phi, theta, rd), data = dat)
confint(fit)
## 9. SSlinp
set.seed(123)
x <- 1:30
y <- linp(x, 0, 1, 20) + rnorm(30, 0, 0.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSlinp(x, a, b, xs), data = dat)
confint(fit)
## 10. SSplin
set.seed(123)
x <- 1:30
y <- plin(x, 10, 20, 1) + rnorm(30, 0, 0.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSplin(x, a, xs, b), data = dat)
confint(fit)
## 11. SSquadp
set.seed(123)
x <- 1:30
y <- quadp(x, 5, 1.7, -0.04, 20) + rnorm(30, 0, 0.6)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSquadp(x, a, b, c, xs), data = dat, algorithm = "port")
## Using port because default does not work
summary(fit)
## It's strange but confint will return NAs unless level is 0.5
confint(fit, level = 0.5)
## 12. SSpquad
set.seed(12345)
x <- 1:40
y <- pquad(x, 5, 20, 1.7, -0.04) + rnorm(40, 0, 0.6)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSpquad(x, a, xs, b, c), data = dat)
confint(fit)
## 13. SSblin
set.seed(1234)
x <- 1:30
y <- blin(x, 0, 0.75, 15, 1.75) + rnorm(30, 0, 0.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSblin(x, a, b, xs, c), data = dat)
confint(fit)
## 14. SSexpf
set.seed(1234)
x <- 1:15
y <- expf(x, 10, -0.3) + rnorm(15, 0, 0.2)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSexpf(x, a, c), data = dat)
confint(fit)
## 15. SSexpfp
set.seed(12345)
x <- 1:30
y <- expfp(x, 10, 0.1, 15) + rnorm(30, 0, 1.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSexpfp(x, a, c, xs), data = dat)
confint(fit)
## 16. SSpexpf
set.seed(1234)
x <- 1:30
y <- pexpf(x, 20, 15, -0.2) + rnorm(30, 0, 1)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSpexpf(x, a, xs, c), data = dat)
## 17. SSbell
set.seed(1234)
x <- 1:20
y <- bell(x, 8, -0.0314, 0.000317, 13) + rnorm(length(x), 0, 0.5)
dat <- data.frame(x = x, y = y)
fit <- nls(y ~ SSbell(x, asym, a, b, xc), data = dat)
confint(fit)
## 18. SSratio
require(minpack.lm)
set.seed(1234)
x <- 1:100
y <- ratio(x, 1, 0.5, 1, 1.5) + rnorm(length(x), 0, 0.025)
dat <- data.frame(x = x, y = y)
fit <- nlsLM(y ~ SSratio(x, a, b, c, d), data = dat)
## Testing nlsLMList
require(nlme)
data(Orange)
fit.nlis.o <- nlsLMList(circumference ~ SSlogis(age, asym, xmid, scal), data = Orange)
data(Soybean)
fit.nlis1.s <- nlsLMList(weight ~ SSbgf(Time, w.max, t.e, t.m), data = Soybean)
fit.nlis2.s <- nlsLMList(weight ~ SSbgrp(Time, w.max, lt.e, ldt), data = Soybean)
fit.nlme <- nlme(fit.nlis2.s, random = pdDiag(w.max + lt.e ~ 1))
##plot(augPred(fit.nlme, level=0:1))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.