Nothing
###############################################################
###############################################################
###############################################################
#' @export
uncs_guni_cn <- function(x, ...) UseMethod("uncs_guni_cn")
#' Unconditional/symmetric Gaussian/uniform combined noise
#'
#' Introduction of \emph{Unconditional/symmetric Gaussian/uniform combined noise} into a classification dataset.
#'
#' \emph{Unconditional/symmetric Gaussian/uniform combined noise} corrupts all the samples for
#' each attribute in the dataset. Their values are corrupted by adding a random value
#' following a Gaussian distribution of \emph{mean} = 0 and \emph{standard deviation} = (\emph{max}-\emph{min})·\code{k}, being
#' \emph{max} and \emph{min} the limits of the attribute domain. For nominal attributes, a random value is chosen.
#' Additionally, this noise model also selects (\code{level}·100)\% of the samples
#' in the dataset with independence of their class. The labels of these samples are randomly
#' replaced by different ones within the set of class labels.
#'
#' @param x a data frame of input attributes.
#' @param y a factor vector with the output class of each sample.
#' @param level a double in [0,1] with the noise level to be introduced.
#' @param k a double in [0,1] with the scale used for the standard deviation (default: 0.2).
#' @param sortid a logical indicating if the indices must be sorted at the output (default: \code{TRUE}).
#' @param formula a formula with the output class and, at least, one input attribute.
#' @param data a data frame in which to interpret the variables in the formula.
#' @param ... other options to pass to the function.
#'
#' @return An object of class \code{ndmodel} with elements:
#' \item{xnoise}{a data frame with the noisy input attributes.}
#' \item{ynoise}{a factor vector with the noisy output class.}
#' \item{numnoise}{an integer vector with the amount of noisy samples per variable.}
#' \item{idnoise}{an integer vector list with the indices of noisy samples per variable.}
#' \item{numclean}{an integer vector with the amount of clean samples per variable.}
#' \item{idclean}{an integer vector list with the indices of clean samples per variable.}
#' \item{distr}{an integer vector with the samples per class in the original data.}
#' \item{model}{the full name of the noise introduction model used.}
#' \item{param}{a list of the argument values.}
#' \item{call}{the function call.}
#'
#' @references
#' S. Kazmierczak and J. Mandziuk.
#' \strong{A committee of convolutional neural networks for image classification in the
#' concurrent presence of feature and label noise}.
#' In \emph{Proc. 16th International Conference on Parallel Problem Solving from Nature},
#' volume 12269 of LNCS, pages 498-511, 2020.
#' \doi{10.1007/978-3-030-58112-1_34}.
#'
#' @examples
#' # load the dataset
#' data(iris2D)
#'
#' # usage of the default method
#' set.seed(9)
#' outdef <- uncs_guni_cn(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)], level = 0.1)
#'
#' # show results
#' summary(outdef, showid = TRUE)
#' plot(outdef)
#'
#' # usage of the method for class formula
#' set.seed(9)
#' outfrm <- uncs_guni_cn(formula = Species ~ ., data = iris2D, level = 0.1)
#'
#' # check the match of noisy indices
#' identical(outdef$idnoise, outfrm$idnoise)
#'
#' @note Noise model adapted from the papers in References.
#'
#' @seealso \code{\link{sym_cuni_cn}}, \code{\link{sym_cuni_an}}, \code{\link{print.ndmodel}}, \code{\link{summary.ndmodel}}, \code{\link{plot.ndmodel}}
#'
#' @name uncs_guni_cn
NULL
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname uncs_guni_cn
#' @importFrom "stats" "rnorm"
uncs_guni_cn.default <- function(x, y, level, k = 0.2, sortid = TRUE, ...){
######################################################
# check for errors #########
if(!is.data.frame(x)){
stop("argument \"x\" must be a data frame")
}
if(!is.factor(y)){
stop("argument \"y\" must be a factor vector")
}
if(nlevels(y) < 2){
stop("argument \"y\" must have at least 2 levels")
}
if(level < 0 || level > 1){
stop("argument \"level\" must be in [0,1]")
}
if(nrow(x) != length(y)){
stop("number of rows of \"x\" must be equal to length of \"y\"")
}
if(k < 0 || k > 1){
stop("argument \"k\" must be in [0,1]")
}
######################################################
# introduce attribute noise #########
xori <- x
yori <- y
num_noise <- 0
idx_noise <- list()
idx_clean <- list()
if(level > 0){
num_noise <- nrow(x)
for(a in 1:ncol(x)){
idx_noise[[a]] <- 1:nrow(x)
idx_clean[[a]] <- setdiff(1:nrow(x),idx_noise[[a]])
if(is.numeric(x[,a])){
newvalues <- x[idx_noise[[a]],a] + rnorm(n = num_noise, mean = 0, sd = (max(x[,a])-min(x[,a]))*k)
if(is.integer(x[,a])){
newvalues <- round(newvalues)
}
newvalues[newvalues < min(x[,a])] <- min(x[,a])
newvalues[newvalues > max(x[,a])] <- max(x[,a])
}
else if(is.factor(x[,a])){
newvalues <- rep(NA, length(idx_noise[[a]]))
for(s in 1:length(idx_noise[[a]])){
newvalues[s] <- sample_replace(x = 1:nlevels(x[,a]), size = 1, original = FALSE, ref = as.integer(x[idx_noise[[a]][s],a]))
}
newvalues <- levels(x[,a])[newvalues]
}
x[idx_noise[[a]],a] <- newvalues
}
}
else{
for(a in 1:ncol(x)){
idx_noise[[a]] <- integer(0)
idx_clean[[a]] <- setdiff(1:nrow(x),idx_noise[[a]])
}
}
classes <- levels(y)
distr <- as.vector(table(factor(y, levels = classes)))
names(distr) <- classes
# introduce label noise #########
if(level > 0){
num_noise <- round(nrow(x)*level)
idx_noise[[ncol(x)+1]] <- sample(x = 1:nrow(x), size = num_noise, replace = FALSE)
if(sortid)
idx_noise[[ncol(x)+1]] <- sort(idx_noise[[ncol(x)+1]])
idx_clean[[ncol(x)+1]] <- setdiff(1:nrow(x),idx_noise[[ncol(x)+1]])
if(num_noise > 0){
newvalues <- sample_replace(x = 1:nlevels(y), size = num_noise, original = FALSE, ref = as.integer(y[idx_noise[[ncol(x)+1]]]))
newvalues <- levels(y)[newvalues]
y[idx_noise[[ncol(x)+1]]] <- newvalues
}
}
raux <- findnoise(xori, yori, x, y, "uncs_guni_cn")
######################################################
# create object of class 'ndmodel' #########
call <- match.call()
call[[1]] <- as.name("uncs_guni_cn")
res <- list(xnoise = x,
ynoise = y,
numnoise = raux$numnoise,
idnoise = raux$idnoise,
numclean = raux$numclean,
idclean = raux$idclean,
distr = distr,
model = "Unconditional/symmetric Gaussian/uniform combined noise",
param = list(level = level, k = k, sortid = sortid),
call = call
)
class(res) <- "ndmodel"
return(res)
}
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname uncs_guni_cn
#' @importFrom "stats" "model.frame"
uncs_guni_cn.formula <- function(formula, data, ...){
if(!is.data.frame(data)){
stop("argument \"data\" must be a data frame")
}
mf <- model.frame(formula,data)
attr(mf,"terms") <- NULL
x <- mf[,-1]
y <- mf[,1]
res <- uncs_guni_cn.default(x = x, y = y, ...)
res$call <- match.call(expand.dots = TRUE)
res$call[[1]] <- as.name("uncs_guni_cn")
return(res)
}
###############################################################
###############################################################
###############################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.