Nothing
summary.est.stratified.pscore <- function(object,
...)
{
if( object$family == "binomial" ){
meas <- "odds ratios ('or')"
col.n <- c("or","SE[log[or]]","[95%-CI[or]]")
}else{
meas <- "differences ('effect')"
col.n <- c("effect","SE[effect]","[95%-CI[effect]]")
}
if ( !is.list(object$lr.estimation) ){
lr.eff.c <- lr.se.c <- NULL
lr.eff.m <- lr.se.m <- NULL
lr.ci.c <- lr.ci.m <- NULL
}else{
if( object$family == "binomial" ){
lr.eff.c <- round(object$lr.estimation$effect,3)
lr.se.c <- round(object$lr.estimation$se,4)
lr.eff.m <- round(object$lr.estimation$effect.marg,3)
lr.se.m <- round(object$lr.estimation$se.marg,4)
lr.ci.c <- round(c(exp(log(lr.eff.c) - qnorm(0.975)*lr.se.c),
exp(log(lr.eff.c) + qnorm(0.975)*lr.se.c)),3)
lr.ci.m <- round(c(exp(log(lr.eff.m) - qnorm(0.975)*lr.se.m),
exp(log(lr.eff.m) + qnorm(0.975)*lr.se.m)),3)
}else{
lr.eff.c <- round(object$lr.estimation$effect,3)
lr.se.c <- round(object$lr.estimation$se,4)
lr.ci.c <- round(c(lr.eff.c - qnorm(0.975)*lr.se.c,
lr.eff.c + qnorm(0.975)*lr.se.c),3)
}
}
if ( !is.list(object$ps.estimation$adj) ){
ps.adj.eff <-
ps.adj.se <-
ps.adj.ci <-
ps.adj.str <- NULL
}else{
ps.adj.eff <- round(object$ps.estimation$adj$effect,3)
ps.adj.se <- round(object$ps.estimation$adj$se,4)
ps.adj.str <- round(object$ps.estimation$adj$effect.str,3)
if( object$family == "binomial" ){
ps.adj.ci <- round(c(exp(log(ps.adj.eff) - qnorm(0.975)*ps.adj.se),
exp(log(ps.adj.eff) + qnorm(0.975)*ps.adj.se)),3)
}else{
ps.adj.ci <- round(c(ps.adj.eff - qnorm(0.975)*ps.adj.se,
ps.adj.eff + qnorm(0.975)*ps.adj.se),3)
}
}
if ( object$family=="binomial" ){
crude <- round(object$ps.estimation$crude$effect,3)
crude.se <- round(object$ps.estimation$crude$se,4)
crude.ci <- round(c(exp(log(crude)-qnorm(0.975)*crude.se),
exp(log(crude)+qnorm(0.975)*crude.se)),3)
rr <- round(object$ps.estimation$unadj$effect,3)
rr.se <- round(object$ps.estimation$unadj$se,4)
mh <- round(object$ps.estimation$unadj$effect.mh,3)
mh.se <- round(object$ps.estimation$unadj$se.mh,4)
rr.ci <- round(c(exp(log(rr)-qnorm(0.975)*rr.se),
exp(log(rr)+qnorm(0.975)*rr.se)),3)
mh.ci <- round(c(exp(log(mh)-qnorm(0.975)*mh.se),
exp(log(mh)+qnorm(0.975)*mh.se)),3)
str <-
data.frame(rbind(rep("-----",times=length(levels(object$stratum.index))),
round(object$ps.estimation$unadj$p0.str,2),
round(object$ps.estimation$unadj$p1.str,2),
round(object$ps.estimation$unadj$odds.str,2)),
row.names=c("",
" outcome rates 'p0' ",
" outcome rates 'p1' ",
" odds ratio"))
colnames(str) <-
c(paste("S", seq(1:length(levels(object$stratum.index))),sep=""))
}else{
crude <- round(object$ps.estimation$crude$effect,3)
crude.se <- round(object$ps.estimation$crude$se,4)
crude.ci <- round(c(crude-qnorm(0.975)*crude.se,
crude+qnorm(0.975)*crude.se),3)
diff <- round(object$ps.estimation$unadj$effect,3)
diff.se <- round(object$ps.estimation$unadj$se,4)
diff.ci <- round(c(diff-qnorm(0.975)*diff.se,
diff+qnorm(0.975)*diff.se),3)
str <-
data.frame(rbind(rep("-----",times=length(levels(object$stratum.index))),
round(object$ps.estimation$unadj$effect.str,3)),
row.names=c("","Unadjusted effect"))
colnames(str) <-
c(paste("S", seq(1:length(levels(object$stratum.index))),sep=""))
}
if ( object$family=="binomial" ){
eff <- c(" -----",
paste("",crude,sep=""),
"",
paste("",rr,sep=""),
paste("",mh,sep=""),
paste("",ps.adj.eff,sep=""),
"",
paste("",lr.eff.c,sep=""),
paste("",lr.eff.m,sep=""),
"")
se <- c(" -----------",
paste("",crude.se,"", sep=""),
"",
paste("",rr.se,"", sep=""),
paste("",mh.se,"", sep=""),
paste("",ps.adj.se,"", sep=""),
"",
paste("",lr.se.c,"", sep=""),
paste("",lr.se.m,"", sep=""),
"")
ci <- c(" ------------",
paste("[",crude.ci[1],",",crude.ci[2], "]",sep=""),
"",
paste("[",rr.ci[1],",",rr.ci[2],"]",sep=""),
paste("[",mh.ci[1],",",mh.ci[2],"]",sep=""),
paste("[",ps.adj.ci[1],",",ps.adj.ci[2],"]",sep=""),
"",
paste("[",lr.ci.c[1],",",lr.ci.c[2],"]",sep=""),
paste("[",lr.ci.m[1],",",lr.ci.m[2],"]",sep=""),
"")
df <-
data.frame(cbind(eff, se, ci),
row.names=c("",
"Crude",
"Stratification", " Outcome rates", " MH", " Adjusted",
"Regression", " Conditional", " Marginal", " "))
colnames(df) <- col.n
}else{
eff <- c(" ------",
paste("",crude,sep=""),
"",
paste("",diff,sep=""),
paste("",ps.adj.eff,sep=""),
paste("",lr.eff.c,sep=""),
"")
se <- c(" ----------",
paste("",crude.se,"", sep=""),
"",
paste("",diff.se,"", sep=""),
paste("",ps.adj.se,"", sep=""),
paste("",lr.se.c,"", sep=""),
"")
ci <- c(" ----------------",
paste("[",crude.ci[1],",",crude.ci[2], "]",sep=""),
"",
paste("[",diff.ci[1],",",diff.ci[2],"]",sep=""),
paste("[",ps.adj.ci[1],",",ps.adj.ci[2],"]",sep=""),
paste("[",lr.ci.c[1],",",lr.ci.c[2],"]",sep=""),
"")
df <- data.frame(cbind(eff, se, ci),
row.names=c("",
"Crude",
"Stratification", " Unadjusted", " Adjusted",
"Regression", " "))
colnames(df) <- col.n
}
sum.eff <- list(treat = object$name.treat,
outcome = object$name.resp,
measure = meas,
eff.tab = df,
weights = round(object$ps.estimation$weights.str,2),
stratum = str,
adjust = ps.adj.str)
class(sum.eff) <- "summary.est.stratified.pscore"
sum.eff
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.