Nothing
#' Jointly optimal sample allocation identification for single-level
#' randomized controlled trials (RCTs) investigating
#' main and moderation effects (1-1-1m)
#'
#' @description The optimal design of single-level RCTs
#' probing main and moderation effects is to identify the jointly optimal sample
#' allocation that use the minimum budget to achieve targeted
#' statistical power for both effects. The optimal design parameter
#' is the proportion of
#' individuals/units assigned to the experimental condition.
#' This function uses the ant colony optimization algorithm
#' to identify the optimal \code{p}.
#'
#' @inheritParams power.1.111m
#' @param power.main Statistical power specified for the main effect.
#' The default value is .80.
#' @param power.mod Statistical power specified for the moderation effect.
#' The default value is .80.
#' @param d.p The initial sampling domain for p. Default is c(0.1, 0.5).
#' @param e Maximum error value used when solution quality used as
#' the stopping criterion. The default value is 1e-10.
#' @param max.value Maximal value of optimization when used as
#' the stopping criterion. Default is infinite.
#' @param d The standardized main effect size.
#' @param r12 The proportion of within-treatment outcome variance explained
#' by covariates in the model that estimated the main effect.
#' @param q.main The number of covariates in the model estimating the main
#' effect (besides the treatment, moderator). The default value is 1.
#' @param d.p The initial sampling domains for p. Default is c(0.10, 0.50).
#' @param max.iter Maximal number of function evaluations when used as
#' the stopping criterion. The default value is 300.
#' @param n.of.archive Size of the solution archive, default is 20.
#' @param q Locality of the search (0,1). The default value is 0.0001.
#' @param xi Convergence pressure (0, Inf), suggested: (0, 1).
#' The default value is 0.5.
#' @param verbose Print out evaluation process if TRUE. The default value is TRUE.
#' @param n.of.ants Number of ants used in each iteration after
#' the initialization stage. The default value is 10.
#'
#' @return
#' Unconstrained or constrained optimal sample allocation \code{p}).
#' The function also returns statistical power for
#' main and moderation effects,
#' function name, design type,
#' and parameters used in the calculation.
#'
#' @export od.1.111m
#' @examples
#' myod <- od.1.111m(d =.1, gamma = .2, r12 = .50,
#' c1 = 10, c1t = 100)
#' myod
od.1.111m <- function(d = NULL, gamma = NULL, n = NULL, Q = .50,
p = NULL, binary = TRUE,
c1 = NULL, c1t = NULL,
r12 = NULL, r.yx = 0, r.mx = 0, r.ym = 0,
m = NULL,
q.main = 1, q.mod = 1,
power.mod = 0.80, power.main = 0.80,
d.p = c(0.1, 0.5),
sig.level = 0.05, two.tailed = TRUE,
verbose = TRUE, nlim = c(20, 1e7),
max.value = Inf, max.iter = 300, e = 1e-10,
n.of.ants = 10, n.of.archive = 50, q = 0.0001,
xi = 0.5) {
funName <- "od.1.111m"
designType <- "1-1-1 moderation in single-level RCTs"
par <- list(d = d, gamma = gamma, n = n, p = p, Q = Q,
r12 = r12, r.yx = r.yx, r.mx = r.mx, r.ym = r.ym,
c1 = c1, c1t = c1t,
m = m, q.mod = q.mod, q.main = q.main,
sig.level = sig.level, two.tailed = two.tailed,
binary = binary,
max.iter = max.iter,
n.of.ants = n.of.ants, n.of.archive = n.of.archive,
q = q,
xi = xi)
if (sum(sapply(list(d, gamma, c1, c1t),
function(x) is.null(x))) >= 1)
stop("All of 'd', 'gamma', 'c1',
'c1t' must be specified")
NumberCheck <- function(x) {!is.null(x) & !is.numeric(x)}
if (sum(sapply(list(c1, c1t), function(x) {
NumberCheck(x) | x < 0})) >= 1)
stop("'c1', 'c1t' must be numeric in [0, inf)")
if (c1 == 0 & c1t == 0 & is.null(n) & is.null(p))
stop("when c1 and c1t are both zero, p must be constrained,
please specify a value for p")
labFun <- function(x, y) {
if (!is.null(x) & length(x) == 1 & is.character(x)) {x} else {y}
}
plotbyFun <- function(x, y) {
if (!is.null(x) & is.list(x)) {x} else {y}
}
tside <- ifelse(two.tailed == TRUE, 2, 1)
if (binary){
if (two.tailed) {
pwr.mod <- quote({
1 - pt(qt(1-sig.level/2, df = n-q.mod-4),
df = n-q.mod-4, gamma/sqrt((1-r.yx^2)/(n*(p*(1-p)*Q*(1-Q))))) +
pt(qt(sig.level/2, df = n-q.mod-4),
df = n-q.mod-4, gamma/sqrt((1-r.yx^2)/(n*(p*(1-p)*Q*(1-Q)))))
})
} else {
pwr.mod <- quote({
1 - pt(qt(1-sig.level, df = n-q.mod-4), df = n-q.mod-4,
gamma/sqrt((1-r.yx^2)/(n*(p*(1-p)*Q*(1-Q)))))
})
}
} else {
if (two.tailed) {
pwr.mod <- quote({
lambda <-gamma/sqrt((1 - r.yx^2 - r.ym^2 - r.mx^2 +
2*r.yx*r.ym*r.mx)/(n*(p*(1-p))*(1 - r.mx^2)));
1 - pt(qt(1 - sig.level/2, df = n-q.mod-4),
df = n-q.mod-4, lambda) +
pt(qt(sig.level/2, df = n-q.mod-4),
df = n-q.mod-4, lambda)
})
}else{
pwr.mod <- quote({
lambda <-gamma/sqrt((1 - r.yx^2 - r.ym^2 - r.mx^2 +
2*r.yx*r.ym*r.mx)/(n*(p*(1-p))*(1 - r.mx^2)));
1 - pt(qt(1 - sig.level, df = n-q.mod-4),
df = n-q.mod-4, lambda)
})
}
}
if (two.tailed) {
pwr.main <- quote({
lambda <- d * sqrt(p * (1 - p) * n) /
sqrt(1 - r12);
1 - pt(qt(1 - sig.level / tside, df = n - q.main - 2),
df = n - q.main - 2, lambda) +
pt(qt(sig.level / tside, df = n - q.main - 2),
df = n - q.main - 2, lambda)
})
} else {
pwr.main <- quote({
lambda <- d * sqrt(p * (1 - p) * n) /
sqrt(1 - r12);
1 - pt(qt(1 - sig.level / tside, df = n - q.main - 2),
df = n - q.main - 2, lambda)
})
}
par <- c(par, pwr.main = pwr.main, pwr.mod = pwr.mod)
if(!is.null(par$p)){d.p[1] = par$p; prange[1] = par$p}
if (is.null(par$p)){
n.of.opt.pars <- 1
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(n.of.archive, 0)
p.initial <- seq(from = d.p[1], to = d.p[2], length = n.of.initial)
n.of.archive <- n.of.initial
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (p in p.initial){
X <- rbind(X, p)
p.X <- rbind(p.X, p)
n.mod <- stats::uniroot(function(n) eval(pwr.mod) -
power.mod, nlim)$root
n.main <- stats::uniroot(function(n) eval(pwr.main) -
power.main, nlim)$root
n <- max(n.mod, n.main)
m <- p * c1t * n + (1 - p) * c1*n
y <- c(y, 1/m)
budget <- c(budget, m)
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ', n.of.archive,
' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
# the algorithm will stop if it converges
if (sum(apply(dist.mean, 2, stats::sd)) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X)))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank,
n.of.ants, nl, q, n.of.archive, xi)
if (length(o.X) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((0.001 < o.X[i, 1] & o.X[i, 1] < 0.999)) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
p <- X[j, 1]
if (verbose) {cat('Number of tried evaluations is ', n.iter,
".\n", sep = "")}
n.mod <- stats::uniroot(function(n) eval(pwr.mod) -
power.mod, nlim)$root
n.main <- stats::uniroot(function(n) eval(pwr.main) -
power.main, nlim)$root
n <- max(n.mod, n.main)
m <- p * c1t * n + (1 - p) * c1*n
y <- c(y, 1/m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X)))
}
}
} else if (!is.null(par$p)) {
cat("===============================\n",
"There is no calculation performed
because p is contrained",
".\n===============================\n", sep = "")
return(list(par = par, funName = funName,
designType = designType,
out = c(p = par$p)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.