Nothing
#' Optimal sample allocation calculation for two-level CRTs probing
#' moderation effects with cluster-level moderators
#'
#' @description The optimal design of two-level
#' cluster randomized trials (CRTs) probing moderation effects with
#' cluster-level moderators is to to identify
#' the optimal sample allocation that requires the minimum budget
#' to achieve a certain power level.
#' The optimal design parameters include
#' the level-1 sample size per level-2 unit (\code{n})
#' and the proportion of level-2 clusters/groups to be assigned to
#' treatment (\code{p}).
#' This function solves the optimal \code{n} and/or \code{p}
#' with and without a constraint.
#'
#' @inheritParams power.2
#' @param d The standardized main or average treatment effect.
#' @param gamma The standardized moderated treatment effect
#' (i.e., regression coefficient of the interaction
#' term of moderator and treatment).
#' @param Q The proportion of binary moderator that coded as 1.
#' @param q.mod The number of cluster-level covariates in the model
#' (except the treatment indicator, moderator, and the interaction term).
#' @param q.main The number of covariates in the outcome model testing main effects
#' @param r12m The proportion of outcome variance at the individual level
#' explained by covariates in the model with the moderator.
#' @param r22m The proportion of outcome variance at the cluster level
#' explained by covariates in the model with the moderator.
#' @param two.tailed Two tailed test, the default value is TRUE.
#' @param sig.level Significance level or type I error rate, default value is 0.05.
#' @param power.mod Statistical power specified for moderation.
#' The default value is .80.
#' @param power.main Statistical power specified for the total/main effect.
#' The default value is .80.
#' @param e Maximum error value used when solution quality used as
#' the stopping criterion, default is 1e-10.
#' @param max.value Maximal value of optimization when used as
#' the stopping criterion. Default is -Inf.
#' @param d.p The initial sampling domains for p. Default is c(0.5, 0.9).
#' @param d.n The initial sampling domain for n. Default is c(2, 100).
#' @param max.iter Maximal number of function evaluations when used as
#' the stopping criterion.
#' @param n.of.archive Size of the solution archive, default is 100.
#' @param q Locality of the search (0,1), default is 0.0001.
#' @param xi Convergence pressure (0, Inf), suggested: (0, 1), default is 0.5.
#' @param verbose Print out evaluation process if TRUE, default is TRUE.
#' @param Jlim The range for J to solve for a numerical solution.
#' Default is c(max(q.mod, q.main)+7, 1e6).
#' @param nrange The range of the individual-level sample size per cluster
#' that used to exclude unreasonable values. Default value is c(1.5, 10000).
#' @param n.of.ants Number of ants used in each iteration after the initialization
#' of power analysis for calculating required budget, default value is 10.
#' @param tol convergence tolerance.
#'
#'
#' @return
#' Unconstrained or constrained optimal sample allocation
#' (\code{n} and \code{p}).
#' The function also returns
#' function name, design type,
#' and parameters used in the calculation.
#'
#' @export od.2.221m
#'
od.2.221m <- function(d = NULL, gamma = NULL, n = NULL, Q = NULL,
p = NULL, icc = NULL,
c1 = NULL, c1t = NULL, c2 = NULL, c2t = NULL,
r12 = NULL, r22 = NULL,
r12m = NULL, r22m = NULL,
m = NULL,
q.main = 0, q.mod = 0,
tol = 1e-11, power.mod = 0.80, power.main = 0.80,
d.p = c(0.5, 0.9), d.n = c(2, 1000),
sig.level = 0.05, two.tailed = TRUE,
Jlim = NULL,
verbose = TRUE, nrange = c(1.5, 10000),
max.value = Inf, max.iter = 300, e = 1e-10,
n.of.ants = 10, n.of.archive = 50, q = 0.0001,
xi = 0.5
) {
funName <- "od.2.m221"
designType <- "2-2-1 moderation in 2-level CRTs"
if(is.null(r12m)) {r12m = r12}
if(is.null(r22m)) {r22m = r22}
par <- list(d = d, gamma = gamma, n = n, p = p, icc = icc,
r12 = r12, r22 = r22,
r12m = r12m, r22m = r22m,
c1 = c1, c2 = c2, c1t =c1t, c2t = c2t,
m = m, q.mod = q.mod, q.main = q.main,
sig.level = sig.level, two.tailed = two.tailed,
max.iter = max.iter,
n.of.ants = n.of.ants, n.of.archive = n.of.archive,
q = q,
xi = xi
)
if (sum(sapply(list(d, gamma, icc, c1, c2, c1t, c2t),
function(x) is.null(x))) >= 1)
stop("All of 'd', 'gamma', 'icc', 'c1', 'c2',
'c1t', 'c2t' must be specified")
NumberCheck <- function(x) {!is.null(x) & !is.numeric(x)}
if (NumberCheck(icc) | any(0 > icc | icc > 1))
stop("'icc' must be numeric in [0, 1]")
if (sum(sapply(list(c1, c2, c1t, c2t), function(x) {
NumberCheck(x) | x < 0})) >= 1)
stop("'c1', 'c2', 'c1t', 'c2t' must be numeric in [0, inf)")
if (c1 == 0 & c1t == 0 & is.null(n) & is.null(p))
stop("when c1 and c1t are both zero, one of n or p must be constrained,
please specify a value for n or p")
if (c2 == 0 & c2t == 0 & is.null(n) & is.null(p))
stop("when c2 and c2t are both zero, one of n or p must be constrained,
please specify a value for n or p")
labFun <- function(x, y) {
if (!is.null(x) & length(x) == 1 & is.character(x)) {x} else {y}
}
plotbyFun <- function(x, y) {
if (!is.null(x) & is.list(x)) {x} else {y}
}
if(is.null(Jlim)){Jlim <- c(max(q.mod, q.main) + 7, 1e6)}
tside <- ifelse(two.tailed == TRUE, 2, 1)
if (two.tailed) {
pwr.mod <- quote({
lambda <- gamma/sqrt((icc*(1-r22m)+(1-icc)*(1-r12m))/
(p*(1-p)*Q*(1-Q)*J));
1 - pt(qt(1 - sig.level/tside, df = J - q.mod - 4),
df = J - q.mod - 4, lambda) +
pt(qt(sig.level/tside, df = J - q.mod - 4),
df = J - q.mod - 4, lambda)
})
pwr.main <- quote({
lambda <- d * sqrt(p * (1 - p) * J) /
sqrt(icc * (1 - r22) + (1 - icc) * (1 - r12) / n);
1 - pt(qt(1 - sig.level / tside, df = J - q.main - 2),
df = J - q.main - 2, lambda) +
pt(qt(sig.level / tside, df = J - q.main - 2),
df = J - q.main - 2, lambda)
})
} else {
pwr.mod <- quote({
lambda <- gamma/sqrt((icc*(1-r22m)+(1-icc)*(1-r12m))/
(p*(1-p)*Q*(1-Q)*J));
1 - pt(qt(1 - sig.level/tside, df = J - q.mod - 4),
df = J - q.mod - 4, lambda)
})
pwr.main <- quote({
lambda <- d * sqrt(p * (1 - p) * J) /
sqrt(icc * (1 - r22) + (1 - icc) * (1 - r12) / n);
1 - pt(qt(1 - sig.level / tside, df = J - q.main - 2),
df = J - q.main - 2, lambda)
})
}
par <- c(par, pwr.main = pwr.main, pwr.mod = pwr.mod)
if(!is.null(par$n)){d.n[1] = par$n; nrange[1] = par$n}
if(!is.null(par$p)){d.p[1] = par$p; prange[1] = par$p}
if (is.null(par$p) & is.null(par$n)) {
n.of.opt.pars <- 2
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
# initiate parameters
eval <- 0
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(sqrt(n.of.archive), 0)
n.initial <- seq(from = d.n[1], to = d.n[2], length = n.of.initial)
p.initial <- seq(from = d.p[1], to = d.p[2], length = n.of.initial)
n.of.archive <- n.of.initial^2
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (n in n.initial){
for (p in p.initial){
X <- rbind(X, c(p, n))
p.X <- rbind(p.X, c(p, n))
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
budget <- c(budget, m)
}
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ', n.of.archive,
' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
# the algorithm will stop if it converges
if (sum(apply(dist.mean, 2, stats::sd)) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X[1], n = max.X[2])))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank, n.of.ants,
nl, q, n.of.archive, xi)
if (length(o.X) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X[1], n = max.X[2])))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((0.001 < o.X[i, 1] & o.X[i, 1] < 0.999),
(nrange[1] < o.X[i, 2] && o.X[i, 2] < nrange[2])) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
p <- X[j, 1]
n <- X[j, 2]
if (verbose) {cat('Number of tried evaluations is ', n.iter,
".\n", sep = "")}
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
return(list(archive = pp, archive.design.pars = p.X,
archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X[1], n = max.X[2])))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X[1], n = max.X[2])))
}
}
} else if (!is.null(par$n) & is.null(par$p)){
n.of.opt.pars <- 1
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(n.of.archive, 0)
p.initial <- seq(from = d.p[1], to = d.p[2], length = n.of.initial)
n.of.archive <- n.of.initial
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (p in p.initial){
X <- rbind(X, p)
p.X <- rbind(p.X, p)
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
budget <- c(budget, m)
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ', n.of.archive,
' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
# the algorithm will stop if it converges
if (sum(apply(dist.mean, 2, stats::sd)) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X, n = par$n)))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank,
n.of.ants, nl, q, n.of.archive, xi)
if (length(o.X) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X, n = par$n)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((0.001 < o.X[i, 1] & o.X[i, 1] < 0.999)) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
p <- X[j, 1]
if (verbose) {cat('Number of tried evaluations is ', n.iter,
".\n", sep = "")}
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X, n = par$n)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = max.X, n = par$n)))
}
}
} else if (is.null(par$n) & !is.null(par$p)){
n.of.opt.pars <- 1
if (verbose) {cat('The ACO algorithm started initilization..',
".\n", sep = "")}
e.abs <- e # absolute error
e.rel <- e # relative error
last.impr <- max.iter
design.pars <- data.frame()
outcome <- vector()
max.X <- rep(NA, n.of.opt.pars)
max.y <- -Inf
p.X <- vector()
pp <- data.frame(v = numeric(), sd = numeric(), gr = numeric());
outcome <- NULL
n.of.initial <- round(n.of.archive, 0)
n.initial <- seq(from = d.n[1], to = d.n[2], length = n.of.initial)
n.of.archive <- n.of.initial
nl <- matrix(NA, n.of.archive, n.of.archive-1)
X <- NULL
p.X <- NULL
y <- NULL
budget <- NULL
for (n in n.initial){
X <- rbind(X, n)
p.X <- rbind(p.X, n)
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
budget <- c(budget, m)
}
pp <- rbind(pp, data.frame(v = y, sd = 0, gr = 0, m = budget))
pp$gr <- rank(-pp$v, ties.method = "random")
for (i in 1:n.of.archive){
nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]
}
n.iter <- n.of.archive
if (verbose)
{cat('The ACO algorithm finished initilization of ',
n.of.archive, ' analyses',".\n", sep = "")}
while (TRUE) { # the algorithm will stop if one of the criteria is met
dist.mean <- p.X
if (sum(apply(dist.mean, 2, stats::sd)) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = par$p, n = max.X)))
}
dist.rank <- pp$gr
dim(dist.mean) <- c(length(pp$v), n.of.opt.pars)
o.X <- vector()
o.X <- gen.design.pars(dist.mean, dist.rank,
n.of.ants, nl, q, n.of.archive, xi)
if (length(o.X) == 0) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = par$p, n = max.X)))
}
X <- NULL
for (i in 1:n.of.ants){ # exclude unreasonable values
if (sum((nrange[1] < o.X[i, 1] && o.X[i, 1] < nrange[2])) == n.of.opt.pars) {
X <- rbind(X, o.X[i,])
}
}
if(length(X)>0) {
p.X <- rbind(p.X, X)
dim(X) <- c(length(X)/n.of.opt.pars, n.of.opt.pars)
for (j in 1:dim(X)[1]) {
# redo power analysis with n.of.ants times for those reasonable
n.iter <- n.iter + 1
n <- X[j, 1]
if (verbose) {cat('Number of tried evaluations is ',
n.iter, ".\n", sep = "")}
J.mod <- stats::uniroot(function(J) eval(pwr.mod) -
power.mod, Jlim)$root
J.main <- stats::uniroot(function(J) eval(pwr.main) -
power.main, Jlim)$root
J <- max(J.mod, J.main)
m <- p * J * (c1t * n + c2t) + (1 - p) * J *(c1*n + c2)
y <- c(y, 1/m)
pp <- rbind(pp, data.frame(v = 1/m, sd = 0, gr = 0, m = m))
}
}
# recalculate the rank
pp$gr <- rank(-pp$v, ties.method = "random")
idx.final <- pp$gr <= n.of.archive
pp <- pp[idx.final,]
p.X <- p.X[idx.final,]
y <- y[idx.final]
dim(p.X) <- c(length(p.X)/n.of.opt.pars, n.of.opt.pars)
for (i in 1:n.of.archive)
{nl[i,] <- (1:n.of.archive)[1:n.of.archive!=i]}
# check if the required accuracy have been obtained
if (max(y, na.rm = TRUE) > max.y) {
max.y <- max(y, na.rm = TRUE)
max.X <- p.X[which.max(y), ]
last.impr <- eval}
if ((abs(max.y - max.value) < abs(e.rel * max.value + e.abs)) |
(max.y > max.value)) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = par$p, n = max.X)))
}
# check if the maximum allowed number of objective function
# evaluations has not been exceeded
if (n.iter >= max.iter) {
return(list(archive = pp, archive.design.pars = p.X,
n.iter = n.iter, par = par, funName = funName,
designType = designType,
out = list(m = 1/max.y, p = par$p, n = max.X)))
}
}
} else if (!is.null(par$n) & !is.null(par$p)) {
cat("===============================\n",
"There is no calculation performed
because both p and n are contrained",
".\n===============================\n", sep = "")
return(list(par = par, funName = funName,
designType = designType,
out = c(p = par$p, n = par$n)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.